Finally, there is the possibility of improved performance through the use of a protocol that integrates broadcast and point-to-point communication.

Acknowledgments
We gratefully acknowledge the contributions of Bob Gerber, who assisted in the implementation. We also thank the guest editors and the referees, whose many comments helped with the presentation.

This research was supported in part by NSF grant MCS-83-14030.

References

Thomas J. LeBlanc is an assistant professor of computer science at the University of Rochester, New York, where his research focuses on software support for distributed programming, including programming languages, distributed operating systems, and distributed program debugging. He is now exploring these issues in the Butterfly environment, a tightly coupled multiprocessor consisting of 128 MC68000s.

LeBlanc received a BS in computer science from SUNY in 1977 and an MS and PhD in computer science from the University of Wisconsin, Madison, in 1979 and 1982, respectively. He is a member of IEEE-CS and ACM.

Robert P. Cook is an associate professor of computer science at the University of Virginia, where his research interests include concurrent and distributed programming, high-level language architectures, and programming environments. His most recent project is based on the Lilith computer and includes the design of the StarLite meta-operating system and Lilith.mmp. Prior to joining UVA in 1983, he was an assistant professor of computer science at the University of Wisconsin, where he was a principal investigator and designer of the $4.7 million Crystal project, an NSF CER grant.

Cook holds a BE, an MS, and a PhD in computer science from Vanderbilt University.

His address is Dept. of Computer Science, University of Rochester, NY 14627.