Robert V. Rubin is currently pursuing doctoral studies at Brown University. For the 1984-1985 calendar year he is a DEC Graduate Education Engineering Program Scholar. Since 1979, he has been associated with Digital Equipment Corporation, where he has been active in workstation research and development. He received his BS in computing science from Columbia University in 1979.

Eric J. Golin is working toward a PhD in the Computer Science Department of Brown University. His research interests include graphical programming, programming languages and systems. From 1981 to 1983 he worked for Digital Equipment Corporation in the Technical Languages group. He received the ScB degree in computer science from Brown University in 1981.

Steven P. Reiss is an associate professor of computer science at Brown University. His research interests include programming environments, graphical programming, database implementation, statistical database security and computational geometry. His recent work involved the Pecan program development system. He has been a member of the Brown faculty since 1977. He received his AB from Dartmouth College in 1972 and his PhD from Yale University in 1977.

Questions about this article can be addressed to the authors at the Department of Computer Science, Brown University, Box 1910, Providence, RI 02912.

The Ada programming language and its implementation throughout the defense community is one of the significant computer events of the 80's. And the focal point for planning and monitoring this implementation is right here at IDA — the Institute for Defense Analyses.

This is creating high visibility career opportunities for software engineering professionals at all levels from junior to very senior.

The work will be performed by the Computer and Software Engineering Division of IDA, a not-for-profit organization headquartered in Washington, D.C., serving the Office of the Secretary of Defense and the Joint Chiefs of Staff.

The IDA effort on behalf of Ada is focused on five areas: validation of Ada language processors and programming support environments (the highest priority); analysis of policy implications (including the impact of DoD policies on the domestic computer industry); education and training; promoting the adoption of Ada; and the development of automated Ada tools.