The Community for Technology Leaders
RSS Icon
Issue No.03 - May/June (2012 vol.32)
pp: 48-59
Niket K. Choudhary , North Carolina State University
Salil V. Wadhavkar , North Carolina State University
Tanmay A. Shah , North Carolina State University
Hiran Mayukh , North Carolina State University
Jayneel Gandhi , North Carolina State University
Brandon H. Dwiel , North Carolina State University
Sandeep Navada , North Carolina State University
Hashem H. Najaf-abadi , North Carolina State University
Eric Rotenberg , North Carolina State University
Providing multiple superscalar core types on a chip, each tailored to different classes of instruction-level behavior, is an exciting direction for increasing processor performance and energy efficiency. Unfortunately, processor design and verification effort increases with each additional core type, limiting the microarchitectural diversity that can be practically implemented. FabScalar aims to automate superscalar core design, opening up processor design to microarchitectural diversity and its many opportunities.
superscalar processors, instruction-level parallelism, ILP, heterogeneous (asymmetric) multicore, specialization, design automation
Niket K. Choudhary, Salil V. Wadhavkar, Tanmay A. Shah, Hiran Mayukh, Jayneel Gandhi, Brandon H. Dwiel, Sandeep Navada, Hashem H. Najaf-abadi, Eric Rotenberg, "FabScalar: Automating Superscalar Core Design", IEEE Micro, vol.32, no. 3, pp. 48-59, May/June 2012, doi:10.1109/MM.2012.23
1. R. Kumar et al., "Single-ISA Heterogeneous Multicore Architectures: The Potential for Processor Power Reduction," Proc. 36th Ann. IEEE/ACM Int'l Symp. Microarchitecture, IEEE CS, 2003, pp. 81-92.
2. B. Burgess et al., "Bobcat: AMD's Low-Power x86 Processor," IEEE Micro, vol. 31, no. 2, 2011, pp. 16-25.
3. K.R. Kishore et al., "Architectural Strengths of the MIPS32 74K Core Family," white paper, MIPS Technologies, May 2000.
4. D. Burger, T.M. Austin, and S. Bennett, Evaluating Future Microprocessors: The SimpleScalar ToolSet, tech. report CS-TR-1308, Computer Science Dept., Univ. of Wisconsin–Madison, 1996.
5. N.K. Choudhary et al., "FabScalar: Composing Synthesizable RTL Designs of Arbitrary Cores within a Canonical Superscalar Template," Proc. 38th IEEE/ACM Int'l Symp. Computer Architecture, ACM, 2011, pp. 11-22.
6. J.E. Stine et al., "FreePDK: An Open-Source Variation-Aware Design Kit," Proc. IEEE Int'l Conf. Microelectronic Systems Education (MSE 07), IEEE CS, 2007, pp. 173-174.
7. B. Sinharoy et al., "POWER5 System Microarchitecture," IBM J. Research and Development, vol. 49, nos. 4/5, 2005, pp. 505-521.
8. R.E. Kessler, E.J. McLellan, and D.A. Webb, "The Alpha 21264 Microprocessor Architecture," Proc. Int'l Conf. Computer Design: VLSI in Computers and Processors (ICCD 98), IEEE CS, 1998, pp. 90-95.
9. P.H. Wang et al., "Intel Atom Processor Core Made FPGA-Synthesizable," Proc. ACM/SIGDA Int'l Symp. Field-Programmable Gate Arrays, ACM, 2009, pp. 209-218.
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool