The Community for Technology Leaders
RSS Icon
Issue No.03 - May/June (2011 vol.31)
pp: 72-81
Enrico Bini , Scuola Superiore Sant'Anna
Giorgio Buttazzo , Scuola Superiore Sant'Anna
Johan Eker , Ericsson Research
Stefan Schorr , Technische Universitat Kaiserslautern
Raphael Guerra , Technische Universitat Kaiserslautern
Gerhard Fohler , Technische Universitat Kaiserslautern
Karl-Erik Arzen , Lund University
Vanessa Romero Segovia , Lund University
Claudio Scordino , Evidence Srl
<p>High-performance embedded systems require the execution of many applications on multicore platforms and are subject to stringent restrictions and constraints. The ACTORS project approach provides temporal isolation through resource reservation over a multicore platform, adapting the available resources on the basis of the overall quality requirements. The architecture is fully operational on both ARM MPCore and x86 multicore platforms.</p>
Virtual multiprocessor, resource adaptation, multimedia applications, multicore, Linux kernel, Linux scheduler, real-time systems
Enrico Bini, Giorgio Buttazzo, Johan Eker, Stefan Schorr, Raphael Guerra, Gerhard Fohler, Karl-Erik Arzen, Vanessa Romero Segovia, Claudio Scordino, "Resource Management on Multicore Systems: The ACTORS Approach", IEEE Micro, vol.31, no. 3, pp. 72-81, May/June 2011, doi:10.1109/MM.2011.1
1. C.W. Mercer, S. Savage, and H. Tokuda, "Processor Capacity Reserves: Operating System Support for Multimedia Applications," Proc. IEEE Int'l Conf. Multimedia Computing and Systems, Carnegie Mellon Univ., 1994, pp. 90-99.
2. L. Abeni and G. Buttazzo, "Integrating Multimedia Applications in Hard Real-Time Systems," Proc. 19th IEEE Real-Time Systems Symp., IEEE CS Press, 1998, pp. 4-13.
3. K.J. Nesbit et al., "Multicore Resource Management," IEEE Micro, vol. 28, no. 3, 2008, pp. 6-16.
4. R.L. Graham, "Bounds on Multiprocessing Timing Anomalies," SIAM J. Applied Mathematics, vol. 17, no. 2, 1969, pp. 416-429.
5. A.K. Mok, X. Feng, and D. Chen, "Resource Partition for Real-Time Systems," Proc. 7th IEEE Real-Time Technology and Applications Symp., IEEE CS Press, 2001, pp. 75-84.
6. G. Lipari and E. Bini, "A Methodology for Designing Hierarchical Scheduling Systems," J. Embedded Computing, vol. 1, no. 2, 2005, pp. 257-269.
7. D. Stiliadis and A. Varma, "Latency-Rate Servers: A General Model for Analysis of Traffic Scheduling Algorithms," IEEE/ACM Trans. Networking, vol. 6, no. 5, 1998, pp. 611-624.
8. J. Bruno et al., "Disk Scheduling with Quality of Service Guarantees," IEEE Int'l Conf. Multimedia Computing and Systems, vol. 2, IEEE Press, 1999, pp. 400-405.
9. E. Bini, G. Buttazzo, and M. Bertogna, "The Multi Supply Function Abstraction for Multiprocessors," Proc. 15th IEEE Int'l Conf. Embedded and Real-Time Computing Systems and Applications, IEEE Press, 2009, pp. 294-302.
10. I. Molnar, "Modular Scheduler Core and Completely Fair Scheduler (CFS),"
11. D. Faggioli et al., "An EDF Scheduling Class for the Linux Kernel," Proc. 11th Real-Time Linux Workshop, 2009, pp. 197-204.
12. N. Manica et al., "Schedulable Device Drivers: Implementation and Experimental Results," Proc. Int'l Workshop on Operating Systems Platforms for Embedded Real-Time Applications, Politécnico do Porto, 2010, pp. 53-62.
13. L. Rizvanovic and G. Fohler, "The MATRIX: A Framework for Real-Time Resource Management for Video Streaming in Networks of Heterogenous Devices," Int'l Conf. Consumer Electronics 2007, IEEE Press, 2007, doi:10.1109/ICCE.2007.341500.
14. V.R. Segovia et al., "Processor Thermal Control Using Adaptive Bandwidth Resource Management," to be published in Proc. 18th World Congress Int'l Federation of Automatic Control, Elsevier, 2011, pp. 123-129.
15. L. Abeni et al., "QoS Management through Adaptive Reservations," Real-Time Systems, vol. 29, nos. 2-3, 2005, pp. 131-155.
16. A. Kotra and G. Fohler, "Resource Aware Real-Time Stream Adaptation for MPEG-2 Transport Streams in Constrained Bandwidth Networks," Proc. IEEE Int'l Conf. Multimedia and Expo, IEEE CS Press, 2010, pp. 729-730.
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool