Another Cost-Effective Design Tool

This special issue of *IEEE Micro* emphasizes the concept of the embedded processor. In particular we present discussions of the high-end embedded processors that contain 32-bit programming models. These processors support high-performance applications such as local area network servers and 20-page/minute laser printers.

Most users don't see embedded processors. In fact, these processors often control a product not normally considered to be a computer. Designers program the highly integrated, commodity price-driven processor/controller to fit a particular range of applications. If there is a universally accepted definition of an embedded processor, we have not seen it. The best definition comes from looking at examples of how these devices are used.

Embedded processor applications include microwave ovens, laser printers, programmable scales, robots, navigation systems, and automobile antiskid braking systems, engine control, adaptive suspension systems, and audio systems. For years the computer industry has used embedded processors in smart terminals, disk controllers, and communications interfaces.

These processors can be the same general-purpose devices found in your favorite personal computer. However, demand is growing for low-cost processors specifically designed for embedded applications. These devices are, as a rule, variations of existing processors with some functions modified to reduce cost yet still allow the designer maximum functionality for a particular range of applications. In general, embedded applications tend to make use of smaller amounts of memory and make extensive use of EPROMs for program storage. Some embedded applications, such as laser printers and plotters, can access over 2M bytes of memory.

Dataquest, a respected market research firm, estimates that in 1987 over five embedded controllers were sold for every microprocessor sold. That estimate translates to 90 million microprocessors and about 500 million embedded processors sold last year. Obviously, this area of technology cannot be overlooked by the industry or by the practicing design engineer.

In this issue we offer technical and explanatory information about five processors, which we consider to be embedded processors: the 80376, VL86C010, TMS34010, R3010, and 80960. Intel authors discuss how the 80376 was derived from the 80386 in such a way that the user can depend on existing software development tools. They also discuss a companion multifunction chip and give several application examples.
Texas Instruments originally designed the 34010 as an embedded graphics processor. The 34010 designers used general-purpose RISC ideas and added hardware modules to supply DRAM refreshing and bitmap graphics.

VLSI Technology's author recounts the development of a new embedded controller, the VL86C010, which works in an application environment that is interrupt and I/O intensive.

MIPS Computer Systems presents its newly developed RISC floating-point coprocessor, the R3010. This processor is remarkable because of its impressive performance figures.

We round out the issue with a second Intel article on the new architecture of the 80960 embedded processor, which efficiently executes code. The high-performance 80960 incorporates many RISC processor ideas and includes an on-chip floating-point unit.

The future for embedded processors looks extremely bright. We anticipate that future design engineers will consider these processors to be one of their fundamental design building blocks. At the present time embedded processors support a variety of applications that would not be possible—or at least would be extremely difficult—to carry out without their use.

The addition of this improved technology impacts the design process and the way that design engineers think about their designs. With the embedded processor the design engineer gains another cost-effective tool for efficient system design.

Jack Grimes is a graphics system architect with Intel Corporation in Santa Clara, California. He has also been a research director at the ITT Advanced Technology Center in Stratford, Connecticut. While there, he held responsibility for an applied research group working on office automation for software development in large projects. His current research interests include user interfaces, concurrent systems architecture, and management science.

Grimes holds BS, MS, and PhD degrees from Iowa State University in electrical engineering and computer science and an MS in experimental psychology from the University of Oregon. He has served as technical editor of Computer and on the editorial boards of ACM Computer Surveys, IEEE Software, and IEEE Computer Graphics and Applications. From 1980 to 1988 he organized and chaired tutorials at SIGGRAPH on human factors and user interface design.

Joe Hootman is professor of electrical engineering at the University of North Dakota, where he currently holds responsibility for the School of Engineering and Mines CAD Laboratory. He has participated in many National Science Foundation and American Society of Engineering Education faculty development programs. He also served as the technical sessions coordinator for the national ASEE conference held on the UND campus. Before assuming his present position, he was associate professor at Colorado State University and worked with the Environmental Science Services Administration in Boulder, Colorado.

Hootman received his BSEE from the University of Missouri at Rolla and his MS and PhD from Iowa State University. He is a member of ASEE, ACM, IEEE, Tau Beta Pi Sigma Xi, and Eta Kappa Nu. For the past three years he has served as Associate Editor-in-Chief of IEEE Micro.

Questions concerning this special issue can be addressed to either guest editor. Contact Grimes at Intel Corporation, SC4-40, 2625 Walsh Avenue, PO Box 58122, Santa Clara, CA 95052-8122. Hootman's address is Electrical Engineering Department, University of North Dakota, PO Box 7165, Grand Forks, ND 58202.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate number on the Reader Interest Card.

Low 150 Medium 151 High 152

June 1988 9