Recently, we have observed an increasing variety of approaches to computer and system architectures that document the progress made in research in these fields. Apart from radical alternatives (for example, dataflow systems) we find a rich spectrum of evolutionary changes with respect to the classical von Neumann concept of monoprocessor computers.

In this issue we present some approaches for advanced architectures recently developed in West Europe. The size of this issue is too small to present an exhaustive—and detailed—description of the vast array of architectural work in the industrial and academic world. This would be true even if we considered only the European scene. Therefore we shall limit this collection to exemplifying the current state in the European industry through several selected examples. These approaches were developed in industrial research laboratories so that the results of the works were strongly influenced by the requirements of practical application. We plan to complete the overview in a later issue in which we will present some results of academic activities.

The selected articles deal with different subtopics. ICL’s D.J. McLauchlan presents the European strategy for the development of the microelectronics and computer industry. The second article by M. Homwood, D. May, D. Shepherd, and R. Shepherd from Inmos describes the IMS T800 transputer and its use in close connection with programming in the Occam language.

Then, H. Kirmann from Brown Boveri Cie. introduces the problems of fault tolerance in real-time data processing systems and surveys several solutions developed in the European industry. In the following article, W. J. H. J. Bronnenberg, A. J. Nijman, E. A. M. Odijk, and R. A. H. van Twist discuss the system and machine architecture of a decentralized object-oriented machine (DOOM), which was developed at Philips Research Laboratories. Finally, G. Micheletti and C. Salati from Telettra present a distributed system architecture developed for applications in telecommunications.

Several other authors also submitted excellent contributions that could not be included in this limited issue; look for them in later issues of IEEE Micro. We thank all authors and the referees for their cooperative work.
Dante Del Corso is professor of electronics in the department of electronics at the Politecnico di Torino, Italy. He has worked in the fields of analog circuit design, data acquisition systems, and satellite communications. His current research interests include computer communication structures, protocol design and verification techniques, multiprocessor architecture, and VLSI design techniques.

Del Corso received the DrEng degree in electronic engineering from Politecnico in 1970. He is a member of the IEEE, the Editorial Board of IEEE Micro, and the Associazione Elettrotecnica Italiana.

Questions may be directed to Del Corso at the Politecnico di Torino, C. Duca degli Abruzzi 24, 10129 Torino, Italy.

Karl E. Grosspietsch is a research employee at the German national research center for data processing, Gesellschaft fuer Mathematik und Datenverarbeitung (GMD) in St. Augustin, West Germany. He joined GMD in 1974. His main activities comprise research in the fields of computer architecture, fault tolerance, and VLSI design.

Grosspietsch studied computer science at the University of Hamburg, where he received his diploma in 1974. In 1979 he received a PhD in computer science from the University of Bonn. He is a member of the German computing society, Gesellschaft fuer Informatik and the Editorial Board of IEEE Micro.

Questions may be directed to Grosspietsch at GMD, Schloss Birlinghoven, 5205 St. Augustin 1, West Germany.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate number on the Reader Interest Card.

Low 150 Medium 151 High 152