Looking into the future with TRON

Ken Sakamura
University of Tokyo

We have seen significant advances in computer hardware technology, most notably in VLSI technology. However, we cannot really say that the computer systems of today take this technical advancement to its full potential. Why is this so? A major reason is that the same computer system architecture, which was designed rather prematurely, has been retained. We design new systems, as a result, in the name of "backward compatibility."

That the recent advances in technology have not been used to the fullest extent is also seen in other industrial fields. However, the computer industry has probably experienced the most radical changes in its hardware technology. Software compatibility requires that hardware components remain rather stable. So the way hardware components are used in real systems and the way these components can be used to their full potential are now very different. Much is needed to correct the situation.

Computer systems today are like a house that has gone through many stages of renovations and additions, starting from a cozy house for two and expanding to a large house with rooms for children. As such a house may have many winding corridors and the joints between the new installations and old ones may tend to allow rain to seep in, so have today's computer systems become complicated with many defects that can be discerned by careful programmers.

Naturally, such problems tend to grow on their own. So, if we allow these problems to exist today, they will become larger and their inertia, so to speak, will make them very hard to eradicate.

When we speak of compatibility, we tend to speak only of backward compatibility. However, preparing the system to grow and develop smoothly to meet future demands can be considered forward compatibility with the applications of the future. When we think of the ever-growing applications of computer systems, we realize that future compatibility clearly becomes more important than backward compatibility.

If we are to prepare for future compatibility with applications in the 1990's, we must establish new, clean computer system architectures by doing away with outdated designs. If we have to make corrections to the computer systems, we must do it quickly and in a consistent and uniform way. An attempt to make such a correction is the TRON project that is reported in this issue of IEEE Micro.

One notable feature of the TRON project is its openness. We will make public the results of the project, such as system specifications, and distribute them at nominal cost. Also we welcome the opinions of interested parties during the current design stage of the computer system components presently involved in the TRON project. The TRON Association, an
未来をみつめて:
1990年代のアーキテクチャ

VLSI技術を中心とした最近のハードウェア技術の発展は非常に大きなものである。しかし現在作られているコンピュータシステムを見た場合、ソフトウェア危機の予測に代表されるように、これらのハードウェアの技術発展を十分生かし切っていないように思う。

このような問題が出てくる根本的な原因は、いままでのコンピュータがあくまで発展途上のものであったのに、「互換性の維持」という理由で、新しいシステムの構築にまで影響を与えているからだといえる。

従来の工業製品の成熟の過程においてもこのようなことは大なり小なりあったことであり、自然に解決するという考え方もある。しかし、コンピュータの場合他の工業製品と比べ進歩があまり急速であり、成熟するまもなく発表に追いかけててしまう。またコンピュータシステムはソフトウェアとハードウェアから構成されるため、ソフトウェアをそのまま使うにはハードウェアを変えなければならないというように、互換性の維持への欲求が非常に高い。それらのことは事態を従来の工業製品に比べはるかに深刻にしている。

たとえ言うと、コンピュータの技術体系は、その宗教のために作り出した小さなベルが家族が増えたというときで、二階を増築し、離れを増築しというように拡張され、つきはぎだらけの家になったようなものだ。間取りは速路のようになり、立て付けは悪くなって、雨漏りはじめているのだ。

当然のことならこれらの問題点は将来になるほど大きな弊害を生み、拡散する。はおっておくと軌道修正が不可能となるだろう。

「互換性」といった場合には、従来の設計からの互換性を意味するのが普通であるが、今後の拡張や発展のための準備も、将来の応用に対する互換性と考えることができるはずである。コンピュータの応用分野の今後の拡大を考えると、これまでの互換性」と「今後の互換性」とどちらがより重要であるかは明らかである。

90年代の応用に対する互換性を保証するために、ぜひも過去の設計を清算し新しいスマートな基本設計を作っておかなければならない。軌道修正することが必要だとすれば、早く、そして統一的に行うべきである。その軌道修正に対する一つの解答が、本特集のTRONプロジェクトなのである。

TRONプロジェクトのデザイン哲学はオープンということである。最終的な仕様をパブリックドメインとして、全世界に公開することもあり、仕様を決定する段階においても出来るだけ多くの人々の意見を聞いていきたいと考えている。TRON協議会は開かれた組織であり、国、個人、組織無関係に参加することができる。またTRONに関するディスカッションに参加したい方は、以下のCSNETのアドレスに電子メールを送っていただくと幸いである。

A36773@UTOKYO-RELAY, CSNET

April 1987
A promotional videotape about TRON focuses on the project's special features. These pictures taken from the video show a man wearing a brass mask to symbolize the frustrations of people who have had to use the "old" computers under great constraints; he has had to struggle to get his answers. In contrast is the young girl operating a TRON-based workstation, who gets her answers as smoothly as if she were playing a musical instrument.