the chip carrier and DIP. Table 1 gives the attributes of pin grid arrays compared to those of PLCCs, dual inline packages, and leadless chip carriers. Figure 6 shows a typical PGA.

Although electronic packages will continue to evolve, the traditional plastic or ceramic DIP can be expected to retain the largest share of the market for some years to come. The flatpak's future is limited, but chip carriers and PLCCs should see much greater use by the end of the decade. The pin grid array blends the mechanical advantages of the DIP with the ability to support high pin counts—it may be particularly attractive for the high I/O VLSI circuits of the future.

James J. Farrell III is manager of technical communications for Motorola's Semiconductor Products Sector in Austin, Texas. He graduated from the United States Armed Forces Institute (Tokyo) and also attended the New Jersey Institute of Technology. Prior to his present position, Jim held the positions of manager of technical information for microprocessors and application engineer for microprocessors. Before coming to Motorola in 1977, he spent 10 years with Electronic Associates, Inc., engaged in analog/hybrid computer development. Prior to joining EAI, Jim worked on hybrid integrated circuits and power transistor applications for Bendix Semiconductor in Holmdel, New Jersey.

Jim has published or presented over 50 articles and papers in the United States and abroad, in Electronics, Electronic Design, EDN, Digital Design, Electronic Products, New Electronics (China), Elektroniker (Switzerland) and Australian EE, and at Electro, Wescon, Midcon, IMAC (Japan), and Nikkei (Japan), among others. He is the Editor-in-Chief of IEEE Micro. Jim's hobby is geology.

The author's address is Technical Communications, Motorola, Inc., 3501 Ed Bluestein Blvd., Austin, TX 78721.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate number on the Reader Interest Card.

High 150 Medium 151 Low 152