Such a specification is highly desirable to users since it provides greater portability of software. Further, such an open systems architecture specification is advantageous to hardware manufacturers because it allows customized operating systems—needed, say, for real-time functions—to be used without requiring a rewrite of the application software when the operating system is changed. This clearly should be beneficial to vendors of different operating systems.

The operating system functions provided by MOSI include:

- memory management,
- time management and scheduling,
- data transfer,
- process management,
- process synchronization and communication,
- interfacing with the computer's environment, and
- exception handling.

MOSI also specifies levels of compliance which denote levels of capability for different categories of applications.

Jack Cowan first chaired 855 and secured significant support from Intel in creating the initial drafts. Later, Don Jackson of Motorola became chairman and saw the drafts emerge in their final form. Language bindings for Pascal, Ada, and Cobol were included in the drafts, and Fortran and C bindings will be added.

Jim Mooney of West Virginia University is now working group chairman; he may be reached at (304) 293-3607. Additional active members of 855 were Marvin Conrad, Terry Hengl, Sam Kirk, Alan Marcum, and Richard Wirt.

Mooney is working on a CP/M implementation of MOSI. His students are working on a UNIX implementation. The CP/M implementation requires about 10K bytes of memory, with about 8K bytes used for file buffers and 2K bytes for interfacing to language compilers. Much of this memory partially substitutes for the usual run-time library of the operating system. Programs run as fast with MOSI because corresponding functions within the run-time library are deleted. Hence, a MOSI implementation does not suffer a speed penalty. The extra memory that it uses is compensated for by the extra capability MOSI provides.

949—Media Independent Information Transfer (MIIT). This effort was started in the spring of 1982, with Bob Davis as chairman. The standard provides a format for arbitrary files which allows communication or storage by any byte-stream-oriented method. Thus, it is applicable to a wide range of media—paper tape, floppy disks, punched cards, telephone lines, packet switched networks, and optical disks, for example. The address range is 2^64 bits, which can cope with the address space of optical disks or be subdivided for smaller files. MIIT provides optional error detection or correction capabilities such as straight 16-bit checksum, 16-bit CRC according to the CCITT format, 32-bit CRC according to the IEEE 802 LAN standard, and 64-bit checksum, or it supports the user's own. The specific selection is indicated by appropriate bits in the description field. The standard provides a byte count, file type, file name, user-specified fields, date of creation, offset from zero, and an ownership field for indicating copyright information.

Tom Pittman developed a software implementation of the draft. Applications of MIIT have already been made to optical disk files, which benefit from the large address space.

Active participants in the working group included Nels Anderson, Bob Davis, Wayne Fischer, Tom Pittman, Steve Savitzky, and Mike Smolin.

I would like to thank Bob Davis, Dave Gustavson, Don Jackson, Jim Mooney, and Tom Pittman for assisting me in gathering the information for this column.

MicroReview continued from p. 79

to help a consumer take a serious look at his or her needs.

Unfortunately, the guide fails to take into account the latest technology in this field; and its catalogue of hardware and software products seems incomplete as well as dated. Some of the major competitors, such as Crosstalk 16 and the Hayes 1200B board modem for the IBM PC and compatibles, are completely missing. These are major oversights, so while the introductory section is reasonably sound for the novice and the glossary is acceptable, the book, as a whole, is not acceptable as a "Buyer's Guide" to the subject under consideration.


Brought to you from the authors of the Buyer's Guide to Modems and Communication Software, this guide has the same inherent problems as its companion: it includes outdated information on printer technology and it lacks current product listings. I would not recommend these guides as good references for even the novice computer or data communications user.

The AT&T PC 6300 Made Easy by Martin D. Seyer and Leo J. Scanlon (Prentice-Hall, 1985).

This is a reworking of the authors' previous work, The IBM PC Made Easy. With the exception of a few minor errors, this is a reasonably good book for the novice user of both the AT&T PC and MS-DOS compatibles.

The following sections in this book are most useful:

- Computer Components
- Getting Started
- GW Basic
- Disk Operating System (MS-DOS)
- Appendix A: Formatting and Copying Disks
- Appendix E: Pinouts for the PC 6300 Ports

The Computer Components section gives a good though somewhat lengthy description of the PC 6300 hardware. The sections on GW Basic and MS-DOS provide a good feel for the underlying software for this machine, and Appendix A gives the new user a headstart on some very basic operations. This book could certainly give the new user another source for learning the system, apart from the PC 6300 standard documentation.

Thanks to my readers for their comments on this column. If there is any specific hardware, software, or book you would like reviewed, please fill out the Reader Interest Card at the back of this magazine. I mean it when I say, "Keep those cards and letters coming!"

Reader Interest Survey

Indicate your interest in this department by circling the appropriate number on the Reader Interest Card.

High 179 Medium 180 Low 181