Hardware Engineers

If you are an experienced Hardware Engineer, here's your chance to be a part of the best. Join our New Product Development Engineering staff in our Canton, Massachusetts facility, 20 minutes from downtown Boston. Exceptional opportunities exist for innovative individuals to meet the challenges in Advanced Networking Software Systems design, development and planning. You'll be responsible for applying your expertise to a broad range of projects in the following areas: microprocessor design, digital design, voice transmission, time division multiplexing, digital signal processing, TTL, and related software. Working in a "big picture" systems environment, you'll be a part of a team effort charting Codex' new directions in Strategic Systems Design, Network Architecture, LANs, Gateways, Network Management, and Matrix Switching. A BSEE with at least 3 years experience is required.

Network Protocol Specialist

We are seeking a Principal Software Engineer to lead a team of our experts in the specification and development of communications protocol software for our expanding line of LAN products. Responsibilities will include technical project management, design and coding of programs in "C," and analyzing and benchmarking to insure optimum performance of a distributed operating system. To qualify, you must have a BSCS or its equivalent, plus at least 7 years of programming experience utilizing a high level language (PASCAL, FORTRAN, etc.). An in-depth knowledge of UNIX**, "C," and proper coding and documentation techniques is essential.

Please direct your resume, specifying position, to Paul Johnson, CODEX CORPORATION, Dept. 225-884, P.O. Box 507, Canton, MA 02021.

*UNIX is a trademark of Bell Labs.

is a quiet NaN, then the result is one or the other of the input NaNs. Overflow is signaled when x is finite but nextafter(x,y) is infinite; underflow is signaled when nextafter(x,y) lies strictly between $\pm b^{\min}$, in both cases, inexact is signaled.

(6) finite(x) returns the value TRUE if $-\infty < x < +\infty$, and returns FALSE otherwise.

(7) isnan(x), or equivalently $x \neq x$, returns the value TRUE if x is a NaN, and returns FALSE otherwise.

(8) $x < y$ is TRUE only when $x < y$ or $x > y$, and is distinct from $x \neq y$, which means NOT($x = y$) (see again Table 3).

(9) unordered(x,y), or $x \neq y$, returns the value TRUE if x is unordered with y, and returns FALSE otherwise (see again Table 3).

(10) class(x) tells which of the following ten classes x falls into: signaling NaN, quiet NaN, $-\infty$, negative normal, negative subnormal, -0, $+0$, positive subnormal, positive normal, and $+\infty$. This function is never exceptional, not even for signaling NaNs.

References

