
During a sabbatical in 1976-77 he was with Digital Equipment Corporation, working with the R & D Group in Maynard and with the Lab Data Product Group in Marlboro. He is president of DSPS Digital Signal Processing Software, Inc., an Ottawa firm recently formed to market fast DSP software, mainly for the PDP-11, VAX-11, and TMS 320 architectures.

Morris received a PhD in speech communications from Imperial College, University of London, England, and a BASc from the University of Toronto. He is a member of the IEEE and is a registered professional engineer in Ontario.

George S. Carson is a consultant specializing in the specification, design, and implementation of distributed microcomputer systems. He also teaches a course in distributed processing for the UCLA Engineering Extension. His major interests include computer graphics, formal specification of computer systems, and numerical analysis. Prior to establishing his consulting practice in 1981, Carson was with the Systems Software Section of the Government Electronic Systems Division of Harris Corporation, where he supervised a group involved in microprocessor applications. From 1976 to 1978 he was with the Computing Technology Section of the Los Angeles Division of Rockwell International, where he worked in operations research and computer-aided design.

Carson received the BS in mathematics from the University of Tennessee at Knoxville in 1970 and the PhD in mathematics from the University of California, Riverside, in 1975. He is a member of the IEEE, the IEEE Computer Society, the ACM, the American Mathematical Society, and Sigma Xi.

Henrieus Koeman is manager of the Advanced IC Design Aids Section in the Technology and Planning Group of the John Fluke Manufacturing Co., Inc., Everett, Washington, where he is involved in the development and application of high-level software tools for custom IC design. Prior to this assignment he was engineering manager of the Precision Instruments Business Unit and was responsible for the development of several microprocessor-controlled instruments. Before he joined Fluke in 1973, he was employed by Philips Research Laboratories, The Netherlands, where he conducted research in electronic nuclear instrumentation.

Koeman currently serves on the Administrative Committee of the IEEE Instrumentation and Measurement Society. He holds an MSEE from the Technical University of Delft and a PhD from the University of Nijmegen, The Netherlands.

John Burkitt is editor of computer publications in the Computing Services Unit of the University of New South Wales, Australia. After thirty years of industrial research, mainly in the paper industry, he spent two years with the Fischer & Porter Company designing the digital process control system for the Nabalco alumina refinery at Gove in the Northern Territory, Australia.

Burkitt received the BSc from Sydney University in 1944, with honors in physical chemistry, and the diploma in instrument technology from the Royal Melbourne Technical College in 1957. An associate member of the IEEE, he is a senior member of the Institution of Radio and Electronics Engineers of Australia, and is a member of the Australian Computer Society.

IS YOUR MICROCOMPUTER COMPATIBLE WITH OUR NON-DISCRETE ANALOG WORLD?

Discrete, digital data and continuous, analog variables are opposites. It takes special instrumentation skills to combine data and variables into computerized product designs.

THE MICROHYBRID I ANALOG/HYBRID COMPUTER

Add a Comdyna Microhybrid I as a peripheral to your microcomputer system. Your system will become a microcomputer instrumentation and controls laboratory. You'll be able to synthesize continuous variables with analog computer simulation. Under controlled experimental conditions you will introduce a parallelism into your overall designs.

Let us show you how to achieve digital/analog compatibility. *Send for our free article "The Analog/Hybrid Computer... an Ideal Microcomputer Instrumentation and Controls Laboratory."*