Although the Web has evolved greatly since its inception, dissemination and delivery of rapidly changing information to large user communities remains a challenge. We all find ourselves in our daily lives relying on dynamic information, which ranges from real-time weather and traffic information to stock quotes to financial and news alerts. We’re also finding ourselves increasingly interested not only in monitoring dynamic data but also in using it for making timely online decisions.

Consequently, we need techniques to disseminate such data as efficiently as possible. Existing techniques for static data replicate the data closest to the user, but this might involve large communication and computational costs for fast-changing data, which make such techniques infeasible for dynamic data. To this end, researchers have focused on new approaches to building efficient, resilient, and scalable content-distribution networks for dynamic data dissemination.

Caching-based approaches show promise, but there is much work to be done before we’ll see information-dissemination systems that are satisfactory from both performance and correctness perspectives. Personalization mechanisms are also important; users are starting to demand that applications tailor information to the specific tasks or situations with which they’re involved.

A Brief Background

Push-based data dissemination techniques include broadcast disks and publish–subscribe systems. In the broadcast disks abstraction, different data items are broadcast at different rates, depending on the frequency with which they’re modified or accessed; any listener has access to this broadcast information. In the publish–subscribe model, however, publishers multicast information to specific listeners who are expected to subscribe to the information they need. Mechanisms that use multicast-based push, along with multicast tree construction algorithms, also aim to effectively handle dynamic data dissemination. Multicast involves sending updates only to those users who are explicitly interested in the information. A multicast tree is an...
overlay structure on a network that connects sub-
scribers and publishers so that only the intended
receivers get the information. Overlay networks
are the subject of some of the work covered in this
special issue’s articles.

In this Issue
We’re pleased to present three articles that repre-
sent a variety of issues involved with disseminat-
ing dynamic data via the Internet.

The first, “Publish–Subscribe Information De-
livery with Substring Predicates,” investigates the
use of a peer-to-peer paradigm for dynamic data
dissemination. In particular, the authors use dis-
tributed hash tables to match subscriptions with
substring predicates to incoming events.

The second, “Architectural Alternatives for
Information Filtering in Structured Overlays,” takes
an architectural view of information filtering in
overlay networks, comparing two different archi-
tectures. Specifically, the authors compare the two
alternatives along the dimensions of efficiency,
scalability, and filtering effectiveness.

Finally, “A Taxonomy of QoS-Aware, Adaptive
Event-Dissemination Middleware” presents an
overview of adaptive event dissemination middle-
ware, also known as event broker networks. The
authors first review a broad taxonomy of the lit-
erature in the field and then turn to the specific
issue of quality of service, which they examine
along several dimensions. The article ends with a
discussion of adaptive techniques for event deliv-
ery in such systems.

These three articles represent a broad range of
ongoing research in the rapidly evolving field
dynamic information dissemination. Whereas
these approaches use push-based dissemination,
other mechanisms, such as adaptive pull or adap-
tive combinations of push and pull, could dissem-
inate data through a repository overlay network.
Alternative mechanisms such as these are worthy
subjects for future research. We hope you enjoy
reading this special issue as much as we enjoyed
putting it together.

Krithi Ramamritham is the Vijay and Sita Vashee Chair Profes-
sor of Computer Science and Engineering and the Dean of
Research and Development at the Indian Institute of Tech-
nology Bombay, India. His technical interests include real-
time systems, database systems, and real-time databases.

Ramamritham has a PhD in computer science from the Uni-
versity of Utah. He is a fellow of the IEEE, the ACM, and
the Indian National Academy of Engineering. Contact him
krithi@iith.ac.in.

Prashant Shenoy is an associate professor of computer science
at the University of Massachusetts Amherst. His technical
interests include operating and distributed systems, sensor
networks, Internet-based systems, and pervasive multi-
media. Shenoy has a PhD in computer sciences from the
University of Texas at Austin. He is a senior member of the
IEEE and the ACM. Contact him at shenoy@cs.umass.edu.