The Community for Technology Leaders
Green Image
Issue No. 03 - May/June (2005 vol. 20)
ISSN: 1541-1672
pp: 25-31
Dino Pedreschi , Knowledge Discovery and Delivery Laboratory
Alessio Mazzanti , Knowledge Discovery and Delivery Laboratory
Fosca Giannotti , Knowledge Discovery and Delivery Laboratory
Francesco Bonchi , Knowledge Discovery and Delivery Laboratory
ExAnte is a simple yet effective approach for preprocessing input data for mining frequent patterns. The approach questions established research in that it requires no trade-off between antimonotonicity and monotonicity. Indeed, ExAnte relies on a strong synergy between these two opposite components and exploits it to dramatically reduce the data being analyzed to that containing interesting patterns. This data reduction, in turn, induces a strong reduction of the candidate patterns' search space. The result is significant performance improvements in subsequent mining. It can also make feasible some otherwise intractable mining tasks. The authors describe their technology and experiments that proved its effectiveness using different constraints on various data sets.
frequent-pattern mining, constraints, preprocessing, data reduction
Dino Pedreschi, Alessio Mazzanti, Fosca Giannotti, Francesco Bonchi, "ExAnte: A Preprocessing Method for Frequent-Pattern Mining", IEEE Intelligent Systems, vol. 20, no. , pp. 25-31, May/June 2005, doi:10.1109/MIS.2005.45
109 ms
(Ver 3.3 (11022016))