AT&T to build solid state center

AT&T has broken ground in Lehigh County, Pennsylvania, for their new Solid State Technology Center. The center will house approximately 800 scientists, engineers, and support staff now working in other AT&T Bell Laboratories facilities in Pennsylvania and New Jersey.

The work of the center will be to develop specialized electronic devices needed for state-of-the-art telecommunications services, systems, and products—particularly in lightwave transmission. Personnel should be in the center in early 1988.

Erratum

On p. 80 of *D&T*’s April 1986 issue, we mistakenly printed David Deutch’s affiliation as “AT&T Bell Communications research.” It should have been “Bell Communications Research,” since this company is in no way a part of AT&T. Our apologies to all concerned.

Aesco beats pessimistic economy

Aesco Corp., manufacturer of test handlers for surface-mount devices, reports that revenues from its second year of operation, ending March 31, 1986, totaled $2 million—the goal originally set. At MacQuarrie, Aesco’s president, believes that the company’s success means that the surface-mount technology marketplace is beginning to move.

Aesco’s product, the S-150SMD test handler, began shipment in July 1985, and, according to MacQuarrie, customers have reordered in substantial volume. Repeat installations include two of the top three US merchant semiconductor suppliers and one of the leading captive suppliers for surface-mount technology.

MacQuarrie attributes the success to the quality of the product, but also to the need for solutions for new surface-mount packages.

About the cover...

Whether it’s kicking tires, squeezing fruit, or sending a variety of electrical signals through an IC, testing is an economic endeavor—a way for the purchaser to ascertain the probable usefulness of a product. Indeed, testing poses a fundamental economic choice: spend now (in test equipment, rejected parts, labor) to guarantee a targeted level of performance, or spend later (in repairs, rejected assemblies, labor, human life, damaged equipment, lost customers, lawsuits) to correct malfunctions. Quality, or the lack thereof, imposes costs.

Today’s innovations in test equipment are designed to increase accuracy and throughput, and reduce machinery expense—enhancements to testing productivity that ultimately make better use of resources. Pictured on the cover is the Logue-McDonald 323i, a 32-channel test device for static RAMs and logic and programmable-logic chips that costs $12,000 (not counting its accompanying IBM PC XT).

Low-cost test equipment, all else remaining equal (including equipment quality), may do the most to implant quality in our products. With such inexpensive devices, small companies that previously contracted for test functions are able to test in-house, giving them more control over their work and more muscle to voice complaints to suppliers. Large companies can deploy more testing stations to their production lines. By reducing the cost of testing, such equipment can raise the overall level of quality.