Harrison named new Scene editor

Marc L. Harrison has been named to the *D&T* Editorial Board as editor of D&T Scene, replacing Gordon Padwick, who held the post since the magazine's inception.

Harrison is a microprocessor technical consultant at AT&T Information Systems, Holmdel, New Jersey. He is responsible for supporting users of AT&T's UNIX microsystem. Previously, he was involved in the design of AT&T WE 32100 microprocessor. He has been with AT&T since 1978.

Harrison was editor of the IEEE Test Technology Newsletter from 1983 until this year (see related article in this issue). He was president of the IEEE chapter at SUNY Stony Brook from 1976-1978.

Harrison received his BE and MS degrees in electrical engineering from SUNY at Stony Brook in 1978. He is a member of Tau Beta Pi and Eta Kappa Nu.

Fujiwara joins D&T Editorial Board

Hideo Fujiwara, inventor of the FAN algorithm for automatic test generation, has joined the *D&T* Editorial Board as a Far East Editor.

Fujiwara, an associate professor in the Department of Electronics and Communications at Meiji University, Tokyo, has been with the Department of Electronic Engineering at Osaka University since 1974. He was a visiting research assistant professor at the University of Waterloo, and a visiting associate professor at McGill University, Montreal.

His research interests include logic design, design for testability, test pattern generation, fault simulation, built-in self-test, and expert systems for design and test. He is the author of *Logic Testing and Design for Testability*.

Fujiwara received the BE, ME, and PhD degrees in electronic engineering from Osaka University in 1969, 1971, and 1974, respectively. He is a senior member of the IEEE as well as a member of the Institute of Electronics and Communication Engineers of Japan and the Information Processing Society of Japan. He received the IEEE Young Engineer Award in 1977.

Kilby honored by IEEE

Jack St. Clair Kilby, a pioneer in the development of the monolithic IC, recently received the 1986 Medal of Honor from the IEEE.

Kilby, an independent consultant and inventor based in Dallas, holds more than 50 patents, including several covering the monolithic IC that laid the conceptual and technological foundation for the entire field of integrated electronics.

Kilby received the BS and MS degrees from the University of Illinois and the University of Wisconsin, respectively. In 1947, he joined the Centralab Division of Globe Union, Inc., where he spent 11 years in the design and development of semiconductor devices with ceramic-based, silk-screened circuits. He joined Texas Instruments, Inc., in 1958, serving as engineer, entrepreneur, and administrator until taking a leave of absence to become a consultant in 1970.

He is a Fellow of the IEEE and a member of the National Academy of Engineering and Eta Kappa Nu. He has received numerous awards for his scientific achievements.

About the cover

This month's cover uses a Mobius strip to illustrate the synthesis—and resultant blurring of distinctions—between the machine-readable VHDL and the hardware it describes. As the language conveys a description of one machine to another, it becomes in effect a part of the hardware in which it is used. Ideally, VHDL will provide a standard that can be used by design and test professionals alike, facilitating the synthesis of the two fields.

The Mobius strip allows us to follow the flow from machine to language and back to hardware; although the loop appears to have two sides, it really has only one. Skeptical? Try it: take a strip of paper, give it a 180-degree half twist, and glue or tape the ends together to make a loop. Now place a pencil point on the strip and draw a line all the way around, never lifting the pencil from the paper. You'll soon return to your starting point, and the line will appear on both "sides" of the loop!

Erratum

In the December 1985 issue of *D&T*, several pages of "PROD: A VLSI Fault Diagnosis System," by Peter Odryna and Andrzej Strojwas, were printed out of sequence. The pages numbered 33 and 34 should appear ahead of those numbered 31 and 32.