ADVANCES IN LEADERSHIP COMPUTING

10 Guest Editors’ Introduction
James J. Hack and Michael E. Papka
Advances in Leadership Computing

14 Large-Scale Simulations of Sky Surveys
Katrin Heitmann, Salman Habib, Hal Finkel, Nicholas Frontiere,
Adrian Pope, Vitalii Morozov, Steve Rangel, Eve Kovacs, Juliana Kwan,
Nan Li, Silvio Rizzi, Joe Insley, Venkatram Vishwanath, Tom Peterka,
David Daniel, Patricia Fasel, and George Zagaris
Large-volume sky surveys have accessed the Universe’s vast temporal and spatial expanse via a remarkable set of measurements. Interpretation of these cosmological observations requires large-scale numerical simulation and modeling. Addressing analysis workflow complexity is as important as running the underlying extreme-scale simulations. Here, the authors discuss how the Hardware/Hybrid Accelerated Cosmology Code framework addresses these challenges.

24 Experiences from Leadership Computing in Simulations of Turbulent Fluid Flows
Myoungkyu Lee, Rhys Ulerich, Nicholas Malaya, and Robert D. Moser
PoongBack is a turbulence simulation code that helps create realistic simulations of turbulent flows. PoongBack includes a new parallel 3D FFT kernel and shows excellent scalability up to 786,432 cores. Using Mira at the Argonne Leadership Computing Facility, PoongBack achieved direct numerical simulation at $Re = 5,200$, and generated approximately 140 Tbytes of data.

32 Real-Time Stochastic Optimization of Complex Energy Systems on High-Performance Computers
Cosmin G. Petra, Olaf Schenk, and Mihai Anitescu
A scalable approach computes in operationally-compatible time the energy dispatch under uncertainty for electrical power grid systems of realistic size and with thousands of scenarios.

44 Scientific Discovery in Fusion Plasma Turbulence Simulations at Extreme Scale
William Tang, Bei Wang, and Stephane Ethier
Extreme-scale plasma turbulence studies offer new insights on confinement scaling in magnetic fusion systems by using powerful, world-class supercomputers to run simulations with unprecedented resolution and temporal duration. The studies also shed light on how the turbulent transport of heat and particles in the plasma and the associated confinement scale from present-generation devices to much larger ITER-size plasmas.

54 Quantum Dynamics Simulation of Electrons in Materials on High-Performance Computers
André Schleife, Erik W. Draeger, Victor M. Anisimov, Alfredo A. Correa, and Yosuke Kanai
An implementation of Ehrenfest non-adiabatic electron-ion dynamics demonstrates high scalability on two different leadership-class computing architectures. The implementation accurately calculates electronic stopping power, which characterizes the rate of energy transfer from a high-energy particle to electrons in materials. It has the potential to yield other scientific insights using quantum dynamics simulations at the electronic structure level.

ALSO IN THIS ISSUE

62 XSEDE: Accelerating Scientific Discovery
John Towns, Tim Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither,
Andrew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka,
Gregory D. Peterson, Ralph Roskies, J. Ray Scott, and Nancy Wilkins-Diehr
Driven by community needs, the Extreme Science and Engineering Discovery Environment (XSEDE) project substantially enhances the productivity of a growing community of scientists. XSEDE’s integrated, comprehensive suite of advanced digital services federates with other high-end facilities and with campus-based resources, serving as the foundation for a national e-science infrastructure ecosystem.

For more information on these and other computing topics, please visit the IEEE Computer Society Digital Library at www.computer.org/csdl.
Formal Verification of a Gravity-Induced Loss-of-Consciousness Monitoring System for Aircraft
Seonmo Kim, Wonhong Nam, Hyunyoung Kil, and Myunghwan Park

Gravity-induced loss of consciousness (GLOC) due to blood draining away from the brain is one of the main reasons for many high-gravity maneuvering aircraft accidents, with many pilots losing their lives. This article presents a case study to verify a GLOC monitoring system by using a model-checking technique.

Large-Scale Parallel Simulations of 3D Cell Colony Dynamics
Maciej Cytowski and Zuzanna Szymarska

Biological processes are complex and involve many unknown relationships and mechanisms at different scales. Achieving a simulation scale that corresponds, for instance, to clinically detectable tumor sizes is still a huge challenge. A novel, high-performance computational approach enables simulations of 3D cell colony dynamics at a previously unavailable tissue scale.

From the Editors
Anecdotes on Leadership Computing
Steven Gottlieb

Why Facebook Should Hire Astronomers
Charles Day

Books
Teaching the Finite Element Method: A Sophisticated Approach
Prodyot K. Basu

Resources
AIP Membership Information
IEEE Computer Society Information

DEPARTMENT

Editorial: Unless otherwise stated, bylined articles, as well as product and service descriptions, reflect the author’s or firm’s opinion. Inclusion in Computing in Science & Engineering does not necessarily constitute endorsement by IEEE, the IEEE Computer Society, or the AIP. All submissions are subject to editing for style, clarity, and length. IEEE prohibits discrimination, harassment, and bullying. For more information, visit www.ieee.org/web/aboutus/whatis/policies/p9-26.html. Circulation: Computing in Science & Engineering (ISSN 1521-9615) is published bimonthly by the AIP and the IEEE Computer Society. IEEE Computer Society Headquarters, Three Park Ave., 17th Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Cir., Los Alamitos, CA 90720; phone +1 714 821 8380; IEEE Computer Society Headquarters, 2001 L St., Ste. 700, Washington, D.C., 20036; AIP Circulation and Fulfillment Department, 5803, 2 Huntington Quadrangle, Malibu, CA 90455-4102; 2014 annual subscription rate: $22 for members, $255 (nonmember institutional). For AIP society members, 2014 annual subscription rate is $49 (print plus online). For more information on other subscription prices, see www.computer.org/subscribe or https://www.aip.org/forms/journal_catalog/order_form. IEEE Computer Society back issues cost $20 for members, $25 (nonmembers). AIP back issues cost $22 for members. Reuse Rights and Reprint Permissions: Educational or personal use of this material is permitted without fee, provided such use: 1) is not made for profit; 2) includes this notice and a full citation to the original work in the first page of the copy; and 3) does not imply IEEE endorsement of any third-party products or services. Authors and their companies are permitted to post the accepted version of IEEE-copyrighted material on their own web servers without permission, provided that the IEEE copyright notice and a full citation to the original work appear on the first screen of the posted copy. An accepted manuscript is a version that has been revised by the author to incorporate review suggestions, but not the published version with copy-editing, proofreading and formatting added by IEEE. For more information, please go to: http://www.ieee.org/publications_standards/publications/rights/paperversionpolicy.html. Permission to reprint/republish this material for commercial, advertising, or promotional purposes or for creating new collective works for resale or redistribution must be obtained from IEEE by writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2014 IEEE. All rights reserved. Abstracting and Library Use: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy for private use of patrons, provided the per-copy fee indicated in the code at the bottom of the first page of the copy is paid through the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. Postmasters: Send undelivered copies and address changes to Computing in Science & Engineering, 445 Hoes Ln., Piscataway, NJ 08855. Periodicals postage paid at New York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Corporation (Canadian distribution) publications mail agreement number 40038895. Return undeliverable Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6J8 Canada. Printed in the USA.