The Community for Technology Leaders
RSS Icon
Issue No.04 - July/August (2012 vol.14)
pp: 74-81
Fernando V. Paulovich , Universidade de São Paulo
Interactive multidimensional projections can be quite effective as interactive visualization tools. It's also advantageous to use local projection techniques over global ones when facing fully interactive applications.
Visualization, Interactive systems, Approximation methods, Linear systems, Scientific computing, interactive visualization, Visualization, Interactive systems, Approximation methods, Linear systems, Scientific computing, scientific computing, multidimensional projection techniques, Least-Square Projection (LSP), Partial Linear Multidimensional Projection (PLMP), Local Affine Multidimensional Projection (LAMP)
Fernando V. Paulovich, "User-Centered Multidimensional Projection Techniques", Computing in Science & Engineering, vol.14, no. 4, pp. 74-81, July/August 2012, doi:10.1109/MCSE.2012.85
1. E. Tejada, R. Minghim, and L.G. Nonato, “On Improved Projection Techniques to Support Visual Exploration of Multidimensional Datasets,” Information Visualization, vol. 2, no. 4, 2003, pp. 218–231.
2. V. de Silva and J. B. Tenenbaum, Sparse Multidimensional Scaling Using Landmark Points, tech. report, Dept. of Mathematics, Stanford Univ., 2004.
3. E. Pekalska et al., “A New Method of Generalizing Sammon Mapping with Application to Algorithm Speed-up,” Proc. 5th Ann. Conf. Advanced School for Computing and Imaging (ASCI), ASCI, 1999, pp. 221–228.
4. F.V. Paulovich et al., “Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 3, 2008, pp. 564–575.
5. F.V. Paulovich, C.T. Silva, and L.G. Nonato, “Two-Phase Mapping for Projecting Massive Datasets,” IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 6, 2010, pp. 1281–1290.
6. M. Chalmers, “A Linear Iteration Time Layout Algorithm for Visualising High-Dimensional Data,” Proc. Conf. IEEE Visualization, IEEE CS, 1996, pp. 127–ff.
7. F. Jourdan and G. Melançon, “Multiscale Hybrid MDS,” Proc. Conf. Information Visualisation, IEEE CS, 2004, pp. 388–393.
8. A. Morrison, G. Ross, and M. Chalmers, “A Hybrid Layout Algorithm for Sub-Quadratic Multidimensional Scaling,” Proc. IEEE Information Visualization, IEEE Press, 2002, pp. 152–158.
9. F.V. Paulovich et al., “Piecewise Laplacian-Based Projection for Interactive Data Exploration and Organization,” Computer Graphics Forum, vol. 30, no. 3, 2011, pp. 1091–1100.
10. P. Joia et al., “Local Affine Multidimensional Projection,” IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 12, 2011, pp. 2563–2571.
11. T.F. Cox and M.A.A. Cox, Multidimensional Scaling, 2nd ed., Chapman & Hall/CRC, 2000.
12. O. Sorkine and D. Cohen-Or, “Least-Squares Meshes,” Proc. Shape Modeling Int'l, IEEE CS, 2004, pp. 191–199.
13. J. Gower and G. Dijksterhuis., Procrustes Problems. Oxford Univ. Press, 2004.
14. A. Frank and A. Asuncion, “UCI Machine Learning Repository,” Univ. California, Irvine, 2010; http://archive.ics.uci.eduml.
15. J. Daniels et al., “Interactive Vector Field Feature Identification,” IEEE Trans. Visualization and Computer Graphics, vol. 16, no. 6, 2010, pp. 1560–1568.
16. Y. Chen et al., “Exemplar-Based Visualization of Large Document Corpus,” IEEE Trans. Visualization and Computer Graphics, vol. 15, no. 6, 2009, pp. 1161–1168.
17. F.V. Paulovich, L.G. Nonato, and R. Minghim, “Visual Mapping of Text Collections through a Fast High Precision Projection Technique,” Proc. Int'l Conf. Information Visualization, IEEE CS, 2006, pp. 282–290.
18. D. Volpati et al., “Toward the Optimization of an Etongue System Using Information Visualization: A Case Study with Perylene Tetracarboxylic Derivative Films in the Sensing Units,” Langmuir, vol. 28, no. 1, 2012, pp. 1029–1040.
19. F. V. Paulovich et al., “Using Multidimensional Projection Techniques for Reaching a High Distinguishing Ability in Biosensing,” Analytical and Bioanalytical Chemistry, vol. 400, no. 4, 2011, pp. 1153–1159; doi:10.1007/s00216-011-4853-2.
20. F.V. Paulovich et al., “Information Visualization Techniques for Sensing and Biosensing,” Analyst, vol. 136, no. 7, 2011, pp. 1344–1350.
21. W. Cui et al., “Context-Preserving, Dynamic Word Cloud Visualization,” IEEE Computer Graphics and Applications, vol. 30, no. 6, 2010, pp. 42–53.
127 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool