Issue No.01 - January/February (2010 vol.12)

pp: 64-72

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.2

ABSTRACT

<p>This technique helps determine key properties of the quantum Hamiltonian's ground state and tunes quantum fluctuations to help users find optimized solutions to computationally hard problems.</p>

INDEX TERMS

Quantum Monte Carlo, zero-temperature quantum Monte Carlo, quantum annealing

CITATION

Arnab Das, Anjan K. Chandra, Bikas K. Chakrabarti, "A Zero-Temperature Quantum Monte Carlo Algorithm and Quantum Spin Glasses",

*Computing in Science & Engineering*, vol.12, no. 1, pp. 64-72, January/February 2010, doi:10.1109/MCSE.2010.2REFERENCES

- 1. A. Das and B.K. Chakrabarti eds., , "Quantum Annealing and Related Optimization Methods,"
Lecture Notes in Physics, vol. 679, Springer-Verlag, 2005.- 2. A. Das and B.K. Chakrabarti, "Colloquium: Quantum Annealing and Analog Quantum Computation,"
Rev. Mod. Phys., vol. 80, no. 3,2008; http://link.aps.org/doi/10.1103RevModPhys.80.1061 . - 3. G.E. Santoro and E. Tosatti, "Computing: Quantum to Classical and Back,"
Nature Phys., vol. 3, no. 593, 2007, pp. 593–594.- 4. E. Farhi et al., "A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem,"
Science, vol. 292, no. 472, 2001, pp. 472–475.- 5. T. Kadowaki and H. Nishimori, "Quantum Annealing in the Transverse Ising Model,"
Physical Rev. E, vol. 58, 1998, pp. 5355–5363.- 6. G.E. Santoro et al., "Theory of Quantum Annealing of an Ising Spin Glass,"
Science, no. 295, no. 5564, 2002, pp. 2427–2430.- 7. J. Brook et al., "Quantum Annealing of a Disordered Magnet,"
Science, vol. 284, no. 5415, 1999, pp. 779–781.- 8. R. Martonak, G.E. Santoro, and E. Tosatti, "Quantum Annealing of the Traveling-Salesman Problem,"
Physical Rev. E, vol. 70, no. 5,2004; http://link.aps.org/doi/10.1103PhysRevE.70.057701 . - 9. A. Das, B.K. Chakrabarti, and R.B. Stinchcombe, "Quantum Annealing in a Kinetically Constrained System,"
Physical Rev. E, vol. 72, no. 2,2005; http://link.aps.org/doi/10.1103PhysRevE.72.026701 . - 10. R.D. Somma, C.D. Batista, and G. Ortiz, "Quantum Approach to Classical Statistical Mechanics,"
Physical Rev. Letters, vol. 99, no. 3,2007; http://link.aps.org/doi/10.1103PhysRevLett.99.030603 . - 11. G.E. Santoro and E. Tosatti, "Optimization Using Quantum Mechanics: Quantum Annealing through Adiabatic Evolution,"
J. Physics A, vol. 41, 2006; www.iop.org/EJ/article/1751-8121/41/20/209801 a8_20_209801.pdf. - 12. J.P. Neirotti and M.J. de Oliveira, "Monte Carlo Method for Obtaining the Ground-State Properties of Quantum Spin Systems,"
Physics Rev. B, vol. 53, no. 2, 1996, pp. 668–673.- 13. A. Das and B.K. Chakrabarti, "Reaching the Ground State of a Quantum Spin Glass Using a Zero-Temperature Quantum Monte Carlo Method,"
Physics Rev. E, vol. 78, no. 6,2008; http://link.aps.org/doi/10.1103PhysRevE.78.061121 . - 14. E. Seneta,
Non-Negative Matrices and Markov Chains, Springer-Verlag, 1981.- 15. M.J. de Oliveira and J.R.N. Chiappin, "Monte Carlo Simulation of the Quantum Transverse Ising Model,"
Physica A, vol. 238, no. 1–4, 1997, pp. 307–316.- 16. F. Barahona, "On the Computational Complexity of Ising Spin Glass Models,"
J. Physics A, vol. 15, no. 10,1982; www.iop.org/EJ/article/0305-4470/15/10/028 jav15i10p3241.pdf. - 17. M. Mezard, G. Parisi, and M.A. Virasoro,
Spin Glass Theory and Beyond, Lecture Notes Physics, vol. 9, World Scientific, 1987.- 18. J. Stoer and R. Bulirsch,
Introduction to Numerical Analysis, Text in Appl. Math., vol. 12, Springer-Verlag, 1993.- 19. L. Stella and G.E. Santoro, "Quantum Annealing of an Ising Spin-Glass by Green's Function Monte Carlo,"
Physics Rev. E, vol. 75, no. 3,2007; http://link.aps.org/doi/10.1103PhysRevE.75.036703 . |