The Community for Technology Leaders
Green Image
Issue No. 05 - September/October (2006 vol. 8)
ISSN: 1521-9615
pp: 96-103
Dianne P. O'Leary , University of Maryland
In our last homework assignment, we investigated iterative methods for solving large, sparse, linear systems of equations. We saw that the Gauss-Seidel (GS) method was intolerably slow, but various forms of preconditioned conjugate gradient (CG) algorithms gave us reasonable results. The test problems we used were discretizations of elliptic partial differential equations, but for these problems, we can use a faster class of methods called multigrid algorithms.
multigrid, finite element, finite difference

D. P. O'Leary, "Multigrid Methods: Managing Massive Meshes," in Computing in Science & Engineering, vol. 8, no. , pp. 96-103, 2006.
96 ms
(Ver 3.3 (11022016))