I base part of my community development initiatives upon retrospection. CiSE evolved from two separate publications—the IEEE Computer Society's *IEEE Computational Science & Engineering* and the American Institute of Physics' *Computers in Physics*. This blended publication must respond to the interests of both the computational science and engineering community and the applied science and engineering community. The former includes those people working to develop computing machines, software, and application methods with particular relevance to scientific and engineering work. The latter are those people working in science and engineering who are embedded in various scientific and engineering disciplines and for whom both physical science and computing are major or indispensable elements in their work. Within both groups are educators who instruct those within and those aspiring to work in these areas.

Step One

Our task is to build community within this blended constituency in two ways:

- presenting timely content—useful developments in computing and their application to science and engineering—highlighting potential crossovers between the two groups, and
- providing a tutorial service, both within and across these constituencies, for those who want to broaden or deepen their understanding of and capability to work within areas of expertise at the intersection.

In these ways, we endeavor to build new community by providing it a home. In fulfilling this task we will, in a sense, be helping define a new multidisciplinary and “multicultural” community whose languages and habits might differ, but whose common purpose is to investigate, understand, and predict complex phenomena.

One editorial step in pursuit of our mission is to adopt a voice that balances scope, depth, and specificity with timeliness, vision, and implication. Finding manuscripts that embody these qualities is very difficult, as I can testify based on my experience over the past several years as a member of the *CiSE* editorial board. Therefore, an important step on our way forward is for me to properly explain and promote this editorial perspective in the ways in which *CiSE* presents itself to prospective contributors. Yet adopting voice is only one part—finding audience is another. Consequently, I have set about, in conjunction with the editorial board, to redraft our statement to contributing authors. I’ve also begun to visit professional conferences to meet with and talk to prospective contributors and to learn from the grass roots about the relevant topics and discourses in which *CiSE* should engage.

Step Two

A second important step on our way forward is to be willing to take risks. This is necessary because to improve, we must learn, and to learn, we must risk. By running ideas up the flagpole, we expose ourselves to shots as well as salutes. As a perfect example of such a reality, our most recent Technology Reviews department provoked some mixed responses.

Here, excerpted on the following page, are three of the letters that arrived in my email inbox in response to last issue’s Tech Review article (January/February, 2004, pp. 8–16). This article was intended to serve as an introduction to a series of comparative review articles (of three major productivity software packages) scheduled to follow in subsequent issues:
I found your review of Maple, Mathematica, and Matlab in the latest issue of CiSE to be biased and superficial. ... When comparing the three packages, it is important to identify the strengths and unique capabilities of entire systems, including their toolboxes and other add-ons.

The most substantive comment you have about Matlab is a cut-and-paste of the mission statement from our Web site (and) a highlighted statement that says "MathWorks seems to prize modularity." ...

You do not say anything about the difference between symbolic computing and numeric computing, which is the key distinguishing factor between Matlab and the other two packages.

Matlab's intellectual and commercial success derives from its applicability to, and adoption by, technical communities outside of mathematics and physics ... We make mathematical computing accessible to hundreds of thousands of people who might not otherwise have anything to do with mathematics.

Cleve Moler
Chairman and Chief Scientist
The MathWorks

And...

Thanks for conducting the evaluation of Mathematica, Matlab, and Maple in CiSE. The problem for most practicing scientists is that time constraints force one to choose a math application and go with it. As time goes by, though, one wonders if other packages might have some useful advantage. However, the time to evaluate others just never seems to come along. I look forward to your evaluations.

Peter A. Mock, Ph.D., R.G.
President and Principal Hydrologist/

And...

I just finished reading your article in the Jan./Feb. issue of CiSE (and I’m looking forward to the upcoming series). I would like to point out, however, that you’re leaving out of the discussion an excellent program—Mathcad. I’ve used Mathematica and Maple, and I’ve tinkered some with Matlab, but I’ve used Mathcad much more.

Mathcad is far easier to teach to students; it is much more user friendly; it provides much better document-creation capabilities ... it allows mixing of text, graphics, and mathematics in any manner that the user wants to see it done ...

Michael Thackston
Department of Biology, Chemistry, and Physics
Southern Polytechnic State University, Marietta, Georgia

There is some commentary on these notes in the Technology Reviews department in this issue; here, I wish only to point out that we launched this particular series as an experiment to improve the usability of our reviews—and by implication, the usability of our other departments’ articles. Every experiment is risky, and we specifically asked for feedback. We received exactly what we asked for and intend to learn from it.

From this, I conclude with an appeal: Keep those cards and letters coming!