The leading edge of high-performance computing (HPC), an area of considerable growth and pace of progress, extreme-scale computing relates directly to the hardware, software, and applications enabling simulations in the petascale performance range and beyond. Moreover, extreme-scale computing acts as a scientific and technological driver for computing in general. In addition to enabling science through simulations at unprecedented size and fidelity, extreme-scale computing serves as an incubator of scientific and technological ideas for the computing area. As such, its rapid development significantly impacts several neighboring areas such as loosely coupled distributed systems, grid infrastructures, cloud computing, and sensor networks.

The complexity of computing at extreme scales is increasing rapidly, now matching the complexity of the simulations running on them. Therefore, the quest for higher processing speed has become only one of many challenges when designing novel high-end computer systems. This complexity arises from the interplay of various factors such as level of parallelism (systems in this range currently use hundreds of thousands of processing elements and are envisioned to reach millions of threads of parallelism), availability of parallelism in algorithms, design and implementation of system software, deep memory hierarchies, heterogeneity, reliability and resilience, and power consumption, just to name a few.

IT’S ALL ABOUT SCALABILITY

Achieving high levels of sustained performance in applications is a dauntingly challenging task. To respond to this never-ending demand for higher and higher performance, extreme-scale computing incorporates in a single topic area several research and development challenges related to scalability. The questions that have been attracting attention from the professional community at large include the following:

- Are there limits to manageable levels of parallelism? Are millions of threads tractable? What are the programming models that support application de-

Adolfy Hoisie, Los Alamos National Laboratory
Vladimir Getov, University of Westminster
velopment within reasonable levels of effort, while allowing high performance and efficiency?

- Is there a limit to the number of cores that can be used for building a single computer? What is the significance of heterogeneity and hybrid designs in this respect?
- Are there fundamental limits to an increasing footprint of the interconnect? What are the performance/reliability tradeoffs?
- What are the factors that hinder high levels of sustained performance? What are the best ways to assess, model, and predict performance in extreme-scale regimes?
- What are the system software challenges, limitations, and opportunities? Can we develop system software that harnesses heterogeneity and asynchronous designs?
- What are design considerations for the I/O and storage subsystems given the vast amounts of data generated by such simulations?
- What are the main characteristics and challenges in providing high-level quality of service by current and future extreme-scale systems? Given the size and complexity of the systems enabling extreme-scale computing, can we overcome the intrinsic limitations in reliability and resilience?
- Is it inevitable that extreme-scale supercomputers will be delivered together with an associated power plant? Can we reduce as much as possible the power consumption to save energy for a greener planet but also enable the design of even faster computers?

IN THIS ISSUE

In this special issue, we explore some of the salient aspects of extreme-scale computing. The selected articles cover a significant cross-section of the questions listed above.

In “Architectures for Extreme-Scale Computing,” Josep Torrellas outlines the main architectural challenges of extreme-scale computing and describes potential paths forward to ensure the same fast pace of progress that this area sustained in the past decade. Key technologies such as near-threshold voltage operation, non-silicon memories, photonics, 3D die stacking, and per-core efficient voltage and frequency management will be key to energy and power efficiency. Efficient, scalable synchronization and communication primitives, together with support for the creation, commit, and migration of lightweight tasks will enable fine-grained concurrency. A hierarchical machine organization, coupled with processing-in-memory will enhance locality. Resiliency will be addressed with a combination of techniques at different levels of the computing stack. Finally, programming the machine with a high-level data-parallel model and using an intelligent compiler to map the code to the hardware will ensure programmability and performance. Finally, the author outlines Thrifty, a novel extreme-scale architecture.

In “Tofu: A 6D Mesh/Torus Interconnect for Exascale Computers,” Yuichiro Ajima, Shinji Sumimoto, and Toshiyuki Shimizu describe their recently developed high-speed interconnect architecture for next-generation supercomputers that operate beyond 25 petaflops. The first such system, which will be one of the world’s largest supercomputers, is scheduled to begin operation in 2011. The network topology of Tofu is a fault-tolerant 6D mesh/torus, and each link has 10 Gbytes of bidirectional bandwidth. Each of the computation nodes employs four communica-
From the analytical engine to the supercomputer, from Pascal to von Neumann—the IEEE Annals of the History of Computing covers the breadth of computer history. The quarterly publication is an active center for the collection and dissemination of information on historical projects and organizations, oral history activities, and international conferences.

www.computer.org/annals

GUEST EDITORS’ INTRODUCTION

In June 2008, the world entered the petaflops era with the Roadrunner supercomputer installation at Los Alamos. It is widely anticipated that systems with millions of threads, capable of achieving tens of petaflops, will be in existence in just a couple of years. Exascale computing is now within reach.

Development in this area attracts support from funding agencies all around the globe, including the US, Asia (Japan, China, and India, most notably), Europe, and Australia. The main reasons for this are the strategically important application domains and the incubator role that this field has for computing in general. Extreme-scale computing, and HPC in general, is an exciting and fast-developing area with sizable contributions coming from different professional categories, including research and development, industry, education, and end users.

We hope you will enjoy reading the articles in this special issue.

Adolfy Hoisie is the leader of the Center for Advanced Architectures and Usable Supercomputing (CAAUSS) and of the Computer Science for High-Performance Computing group at the Los Alamos National Laboratory. His research interests are performance analysis and modeling of large-scale systems and applications, system architecture, and extreme-scale computing in general. He is a past recipient of the Gordon Bell award and of other awards for research excellence. Contact him at hoisie@lanl.gov.

Vladimir Getov is a professor of distributed and high-performance computing at the University of Westminster, London. His research interests include parallel architectures and performance, autonomous distributed computing, and high-performance programming environments. He received a PhD and DSc in computer science from the Bulgarian Academy of Sciences. He is a member of the IEEE and the ACM and is Computer’s area editor for high-performance computing. Contact him at v.s.getov@westminster.ac.uk.