The Community for Technology Leaders
Green Image
Issue No. 07 - July (2002 vol. 35)
ISSN: 0018-9162
pp: 80,81,82,83,84,85,86
Jinwook Seo , Department of Computer Science & Human-Computer Interaction Laboratory, Maryland Univ., College Park, MD, USA
B. Shneiderman , Department of Computer Science & Human-Computer Interaction Laboratory, Maryland Univ., College Park, MD, USA
ABSTRACT
To date, work in microarrays, sequenced genomes and bioinformatics has focused largely on algorithmic methods for processing and manipulating vast biological data sets. Future improvements will likely provide users with guidance in selecting the most appropriate algorithms and metrics for identifying meaningful clusters-interesting patterns in large data sets, such as groups of genes with similar profiles. Hierarchical clustering has been shown to be effective in microarray data analysis for identifying genes with similar profiles and thus possibly with similar functions. Users also need an efficient visualization tool, however, to facilitate pattern extraction from microarray data sets. The Hierarchical Clustering Explorer integrates four interactive features to provide information visualization techniques that allow users to control the processes and interact with the results. Thus, hybrid approaches that combine powerful algorithms with interactive visualization tools will join the strengths of fast processors with the detailed understanding of domain experts.
INDEX TERMS
DNA, Genomics, Bioinformatics, Data visualization, Sensor arrays, Fluorescence, Large screen displays, Data mining, Data analysis
CITATION
Jinwook Seo, B. Shneiderman, "Interactively exploring hierarchical clustering results [gene identification]", Computer, vol. 35, no. , pp. 80,81,82,83,84,85,86, July 2002, doi:10.1109/MC.2002.1016905
196 ms
(Ver 3.3 (11022016))