The Community for Technology Leaders
Green Image
<p>The visualization of physical processes in general and of vector fields in particular is discussed. An approach to visualizing flow topology that is based on the physics and mathematics underlying the physical phenomenon is presented. It involves determining critical points in the flow where the velocity vector vanishes. The critical points, connected by principal lines or planes, determine the topology of the flow. The complexity of the data is reduced without sacrificing the quantitative nature of the data set. By reducing the original vector field to a set of critical points and their connections, a representation of the topology of a two-dimensional vector field is much smaller than the original data set but retains with full precision the information pertinent to the flow topology is obtained. This representation can be displayed as a set of points and tangent curves or as a graph. Analysis (including algorithms), display, interaction, and implementation aspects are discussed.</p>

J. Helman and L. Hesselink, "Representation and Display of Vector Field Topology in Fluid Flow Data Sets," in Computer, vol. 22, no. , pp. 27-36, 1989.
93 ms
(Ver 3.3 (11022016))