(e) nextafter(x, y) returns the next representable neighbor of x in the direction toward y. If x = y, or either x or y is in the projective mode or a NaN, then x is returned.

(f) finite(x) returns the value TRUE if \(-\infty < x < +\infty \) and returns FALSE otherwise.

(g) isnan(x), or equivalently x ≠ x, returns the value TRUE if x is a NaN and returns FALSE otherwise.

(h) \(x < y\) is TRUE only when \(x < y\) or \(x > y\), and is distinct from \(x \neq y\), which means NOT \((x = y)\) and is never an invalid operation.

(i) unordered(x, y) returns the value TRUE if x is unordered with y and returns FALSE otherwise; this is never an invalid operation.

Preliminary—Subject to Revision

Errata—

An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic

The changes to Jerome T. Coonen's article in the January 1980 issue of *Computer* (pp. 68-79) are of two types. Those marked (E) correct errors, while the others, marked (U), bring the guide up to date with the most recent draft of the proposal.

(U) Introduction, para. 2, line 2: Replace Draft 5.11 with Draft 8.0. Also update the footnote ** to refer to the March 1981 issue of Computer.

(U) §1.1, under Rounding Modes: Delete line (A) and the label "(B)" since all rounding modes are required now.

(E) Table 1: In the formula for represented denormalized numbers the exponent of 2 is incorrect. The correct formula is

\[(-1)^i \times 2^e \times \text{Bias} + 1 \times (L.F). \]

(U) §1.5, paragraph beginning An implementation of . . . : That first sentence should be shortened to An implementation of the standard shall support all four rounding modes.

(U) §1.12: Readers should note that the implementation guide uses unnormalized in its traditional sense, that is, describing any number whose leading significant digit is 0; thus denormalized numbers are simply those unnormalized numbers whose exponent is the format's minimum. On the other hand, Draft 8.0 restricts the word unnormalized to apply only to numbers whose leading significant bit is zero but which are not denormalized.

(E) §2.7: The special case test

If either operand is an unnormal zero then proceed as in c; otherwise,

should be removed from §e and inserted at the beginning of §f, h, i. Thus \(f\) begins simply Compute.

(E) §2.8: The Exception clause of §b, c, f should be changed to Exception: If in \(b\), \(Y\) is unnormal zero, proceed as in a.

(E) §2.9: In §b, c replace unnormal zero by unnormalized. To §f append Normalize Z and check for underflow.

(E) §2.14, para. 1: The sentence beginning An implementation of . . . should be shortened to An implementation of the standard shall support all four rounding modes.

(E) §2.17: The last word of clause (l) should be changed from enabled to disabled.

IEEE P754 voting committee members at time of adoption of the proposed draft

Andrew Allison, Los Altos Hills, California
William Ames, Hewlett-Packard Data Systems
Mike Arya, Cupertino, Calif.
Janis Baron, Intel
Dilip Bhandarkar, Digital Equipment Corporation
Joel Boney, Motorola
Jim Bunch, University of California, La Jolla
Ed Burdick, National Semiconductor
Paul Clemente, Prime Computer
W. J. Cody, Argonne National Laboratory
Jerome T. Coonen, University of California, Berkeley
Jim Crapuchettes, Menlo Computer Associates
Richard H. Delp, Four-Phase Systems
Alvin Despain, University of California, Berkeley
Tom Eggers, Digital Equipment Corporation
Dick Fateman, University of California, Berkeley
Don Feinberg, Digital Equipment Corporation
Stuart Feldman, Bell Laboratories
Eugene Fisher, Lawrence Livermore National Laboratory
Paul F. Flanagan, Analytical Mechanics
Gordon Force, Kylex
Lloyd Fosdick, University of Colorado
Robert Fraley, Hewlett-Packard Laboratories
Howard Fullmer, Parasitic Engineering
Daniel D. Gajski, University of Illinois, Urbana
David Gay, Massachusetts Institute of Technology
C. W. Gear, University of Illinois, Urbana
Martin Graham, University of California, Berkeley
David Gustavson, Stanford Linear Accelerator Center
Guy Haas, Datapoint
Chuck Hastings, Data General
David Hough, Apple Computer
John E. Howe, Intel
Thomas E. Hull, University of Toronto
Suren Irukulla, Prime Computer
Richard James III, Santa Clara, California
Paul S. Jensen, Lockheed Research Laboratory
William Kahan, University of California, Berkeley
Howard Kalkow, Nashua, New Hampshire
Dick Karpinski, University of California, San Francisco
Virginia Kiema, Massachusetts Institute of Technology
Les Kohn, National Semiconductor
Dan Kuypers, Sperry Univac
M. Dundee Maples, M & E Associates
John Markiel, Westmont, New Jersey
Roy Martin, Apple Computer
Dean Miller, Motorola
Webb Miller, University of California, Santa Barbara
John C. Nash, Vanier, Ontario, Canada
Dan O'Dowd, National Semiconductor
Cash Olsen, Signetics
John F. Palmer, Intel
Beresford Parlett, University of California, Berkeley
Dave Patterson, University of California, Berkeley
Mary Payne, Digital Equipment Corporation
Tom Pittman, Itty Bitty Computers
Lewis Randall, Apple Computer
Robert Reid, Dunstable, Massachusetts
Roger Stafford, Beckman Instruments
David Stevenson, Zilog
G. W. Stewart, University of Maryland
Robert O. Steward, Stewart Research Enterprises
Harold Stone, University of Massachusetts
William D. Stueckler, Digital Equipment Corporation
Robert Swarz, Digital Equipment Corporation
George Taylor, University of California, Berkeley
Dar-Sun Tsien, Intel
Greg Walker, Motorola
John Stephen Walther, Hewlett Packard Laboratories
P. C. Waterman, Burlington, Massachusetts