The last IEEE Computer Graphics and Applications special issue on CAD/CAM was in November 1995. Then, CAD/CAM was the major application for computer graphics with about 2.1 million PCs and conventional workstations used for CAD/CAM and more than 100 hardware, software, and systems and services vendors supplying products. Although 3D was available, it was more prevalent in research labs than design departments. In addition, the high-paying jobs were in creating 2D production drawings with some supplemental computer-aided engineering, such as finite analysis. Typical systems were closed, turnkey configurations with a single vendor supplying both hardware and software. The systems were sufficiently expensive that special rooms were assigned to CAD/CAM and users reserved time to use the facility or were assigned full time to a workstation.

This environment has undergone major changes in recent years. According to market studies from Machover Associates, in 2001, annual sales were about $20 billion (compared to about $12 billion in 1995). CAD/CAM now represents about 22 percent of the computer graphics market. Major price reductions accompanied by enormously improved performance has made the systems more ubiquitous. Today, more than 4.5 million PC and conventional workstations are installed for CAD/CAM. While drawing production is still a requirement, design and analysis have become significantly more important. Integration with other applications and, perhaps more importantly, with other enterprise functions is more widespread and important. As far back as 1986, Ford of Europe envisioned a six-phased evolution from department-wide single applications to company-wide CAD/CAM integration. Today, we see that collaborative, rather than serial engineering, is fast becoming the norm. The articles by Corney et al. and Cera et al. address aspects of this trend, and Contero et al.’s article surveys the state of product data quality and collaborative engineering.

Almost all systems are 3D capable, although the use of 3D still isn’t universal. Features like color, animation, and virtual reality enhance the systems’ capability. Significant vendor consolidation has occurred with many of the pioneering suppliers defunct or absorbed into one of the four major surviving system suppliers (Dassault/IBM; AutoDesk; Electronic Data Systems; and Parametric Technology Corporation, or PTC). For some however, 3D geometry is essential to designing and building physical products, and leading-edge users are looking for ways to evaluate the user impact of 3D display technology, as the article by Kasik et al. discusses.

For this special issue, we’ve selected the four articles mentioned and a tutorial by Dorst and Mann on Clifford algebra, which provides an alternate method of representing geometry in CAD/CAM systems. We believe these articles represent a reasonable snapshot of significant characteristics of the new CAD/CAM environment.

Acknowledgments
We’d like to thank the authors and reviewers for helping make this special issue a reality. We’d also like to thank the CG&A staff for their assistance in producing this issue.

Reference

Frank Bliss is an engineering consultant at Electronic Data Systems. He has more than 30 years experience in CAD/CAM; computer graphics; workstation technology; and networks as a systems developer/implementer, user, and researcher. He has been instrumental in new technology development and implementation at EDS, Ford, Bendix, and the US Navy. He has a BSEE in electrical engineering from Wayne State University and an MS in systems engineering and a
PhD in computer engineering from Case Western Reserve University. He received the GM President’s Council Award in 1996 for leading a successful infrastructure project. He is on the editorial board of IEEE Computer Graphics and Applications and is a member of the IEEE, IEEE Computer Society, and ACM.

John Dill is a professor in the School of Engineering Science at Simon Fraser University, Burnaby, Canada. He is also a founder and chief scientist of ThoughtShare Communications. His research interests include information visualization, engineering visualization, human–computer interaction, and intelligence in computer-aided design. He received a BASc in engineering physics from the University of British Columbia, an MS from North Carolina State University, and a PhD in engineering science from the California Institute of Technology. He is active in ACM’s Siggraph and is an IEEE Computer Graphics and Applications editorial board member.

For further information on this or any other computing topic, please visit our Digital Library at http://computer.org/publications/dlib.

Carl Machover is president of Machover Associates, a computer graphics consultancy. He is also an adjunct professor at Rensselaer Polytechnic Institute, president of Art + Science Collaborations, past president of the National Computer Graphics Association, and a fellow of the Society for Information Display and Eurographics. He is editor of The CAD/CAM Handbook (McGraw Hill, 1996) and coexecutive producer of ACM Siggraph’s video, The Story of Computer Graphics. He serves on the editorial board of IEEE Computer Graphics and Applications and many other industry publications. He received the North Carolina State Orthogonal Award and was inducted into the Fine Arts Museum of Long Island Computer Graphics Hall of Fame.

Readers may contact John Dill at dill@cs.sfu.ca, Frank Bliss at frank.bliss@eds.com, and Carl Machover at cmachover@aol.com.

2002 Editorial Calendar

January/February

Information Visualization

Computer-based information visualization has emerged as a distinct field centered around helping people explore or explain data by designing software that exploits the properties of the human visual system. New methodologies and techniques are critical for helping people keep pace with the torrents of data.

March/April

Image-Based Modeling, Rendering, and Lighting

The field of image-based modeling and rendering has already established itself as an important tool for a wide range of computer graphics applications. Image-based techniques use real-world digital photographs to synthesize novel imagery, letting us creatively explore and reinterpret realistic geometry, surface properties, and illumination.

May/June

Graphics in Advanced Computer-Aided Design

Using computers in the design and manufacturing processes has come a long way from the first CAD systems in the automobile and aerospace industries, with the huge mainframes and enormously expensive displays. Current CAD systems exploit innovative uses of the technologies that help to move ideas from concept to model to prototype to product.

July/August

Virtual Worlds, Real Sounds

We only need to close our eyes for a moment to experience the amazing variety of information that our ears provide, often more quickly and richly than any other sense. Using real sounds in virtual worlds involves parametric computation; synthesis; and rendering sound for VR, entertainment, and user interfaces.

* Features a peer-reviewed, bonus CD-ROM

September/October

Computer Graphics Art History and Archaeology

Archaeologists can use computer graphics techniques to reconstruct and visualize archaeological data of a site that might otherwise be difficult to appreciate, with applications in analysis, teaching, and preservation. Similarly, art historians use computer graphics to analyze, study, and preserve great works of art.

November/December

Tracking

High-resolution tracking of user position and orientation (head, hand, feet, and so on) is increasingly a critical issue for virtual reality, augmented reality, modeling and simulation, and animation. Current tracking hardware is based on a variety of sensors including magnetic, optical, inertial, acoustic, and mechanical.