The Community for Technology Leaders
Green Image
ABSTRACT
Many studies of solid models based on 2-manifolds have been done. However, a manifold solid model is not powerful enough, because a regularized Boolean operation may yield a non-manifold result. Furthermore, a solid model can basically represent only one closed volume, and cannot handle volumes, surfaces, and curves simultaneously. A non-manifold topology model is expected to be a break-through in solving these problems. Several representations and Euler operations for non-manifold topology were suggested recently. But, the representations capable of representing volumes with dangling edges and faces were determined in a rather ad hoc manner, so that there have been no discussions on sufficiency or efficiency. Also, the operations were not complete in the sense of manipulating all types of data entities. We propose a data structure and two classes of operations, focusing on neighborhood relationship, as well as boundary information. The data structure is both sufficient and efficient for describing adjacency ordering. The operations are able to manipulate all types of data entities maintaining satisfaction of a certain set of consistency conditions.
INDEX TERMS
geometric modeling, boundary representation, non-manifold topology, Euler operation
CITATION
Fumihiko Kimura, Yasushi Yamaguchi, "Nonmanifold Topology Based on Coupling Entities", IEEE Computer Graphics and Applications, vol. 15, no. , pp. 42-50, January 1995, doi:10.1109/38.364963
91 ms
(Ver 3.1 (10032016))