Guest Editors’ Introduction: Computer Graphics in Europe

Jose Encarnacao
Technische Hochschule Darmstadt

F.R.A. Hopgood
Rutherford Appleton Laboratory

In this issue we have chosen to report on some of the European R&D projects in computer graphics. In a certain sense these projects represent computer graphics trends in Europe. The first article, by Maria Lurdes Dias, describes a new algorithm for simulation of color effects due to interference phenomena. The next article, by Christof Blum, Georg Rainer Hofmann, and Detlef Kroemker, discusses the requirements for “imaging standards.” The following article, by Jürgen Schönhat, Hans-Peter Wiedling, and Veronika Samara, reports on “A New Approach to Graphic Arts and Prepress Information Exchange.” Michael Wilson and Tony Conway in their article report on advanced graphical display techniques and integration with user interfaces for effective use in applications. Their article refers to an ESPRIT project called Hufit.

The last article, by Ken Robinson, Mark Martin, Max Mehl, Allan Davidson, Kieron Drake, and Mel Slater, reports on two ESPRIT projects financed by the European Commission to address the area of advanced, high-performance workstations, called the Euroworkstation (EWS) and Spirit.

We believe that these articles cover some of the highlights of computer graphics R&D in Europe, giving a good picture of the current situation. Readers interested in obtaining more information on computer graphics research, development, and applications in Europe should see:

- Eurographic Seminars—a book series published by Springer-Verlag
- Proceedings of the Annual Conferences of the Eurographics Association, published by North-Holland
Jose Encarnacao is a professor of computer science at the Technische Hochschule Darmstadt (Darmstadt Technical University), head of its Interactive Graphics Research Group, chair of the board of the Darmstadt Computer Graphics Center, and director of the Darmstadt R&D Group of the Fraunhofer Research Society. He serves as a consultant to government, industry, and several international institutions, and was a founder of Eurographics.

Encarnacao holds a Dipl.-Ing. and a Dr.-Ing. in electrical engineering from the Technische Universitaet Berlin. He is a member of GI, VDE, ACM, ACM Siggraph, IFIP WG 5.2, and IFIP WG 5.10.

Readers can contact Encarnacao at Technische Hochschule Darmstadt, FG Graphisch-Interaktive Systeme, Wilhelminenstrasse 7, 6100 Darmstadt, West Germany, fax +49-6151-155-199, e-mail jle@zgdvda.uuep.

F.R.A. Hopgood is head of the Informatics Department at Rutherford Appleton Laboratory. His work there covers a wide range of activities involving computer graphics and interaction in engineering and information technology. In the 1960s and 1970s he helped design graphics systems that produced a number of early computer animations.

Hopgood has been a member of BSI's working group on computer graphics standards since the mid-1970s and was active in the definition of GKS, GKS-3D, PHIGS, and the Computer Graphics Reference Model. He has served as vice chair of Eurographics. He was tutorial chair for Eurographics 86 and joint program chair for Eurographics 89.

Break All The Traditional Barriers
With Three-Dimensional Digitizers

From Science Accessories
Capture graphics from any three-dimensional object or physical movement within a 9 ft. x 9 ft. x 9 ft. cube. What you choose to input is only limited by space... your output is only limited by your imagination.

With a GP-8-3D sonic digitizer from SAC, you can input data directly from any three-dimensional object, or motion study. Your output can be flat art, contour images or dimensions of solid objects, or databases for film and video productions, robotics and more.

Systems Compatibility
The SAC GP-8-3D sonic digitizer converts physical information into digital form for processing by host computers or recording and transmission equipment. Processed information can be used to provide real-time, multipoint analysis of motion, robotic instructions, and databases for CAM, CIM, and other automated and semi-automated systems.

Versatility
The GP-8-3D supports many popular software packages designed for your specific application. If you have special requirements, SAC will work with you to customize a software driver to meet your specifications.

Digitizing Today...
With Tomorrow's Technology

Reader Service Number 2