Sessions covered such topics as medical computer graphics; diagnostic techniques using synthetic imaging and animation; picture archiving and communications systems; the clinical utility of graphics in routine surgical procedures; and the fundamental issues of computer vision. 131 pp.

Order #524

PROCEEDINGS—
1984 International Joint Alpine Symposium
February 11-15, 1984
Nonmembers—$30.00
Members—$15.00

Order from IEEE Computer Society Order Dept.
PO Box 80452, Worldway Postal Center
Los Angeles, CA 90060 USA
(714) 821-8380

Topics include VLSI and semiconductor advances; architectures and performance of numerical, scientific, and supermini computer systems; progress in expert systems; laser printers and optical storage technology; the UNIX operating system; and the DoD STARS program. 522 pp.

Order #525

PROCEEDINGS—28th International Compcon Spring 84 Conference
February 27—March 1, 1984
Nonmembers—$50.00
Members—$25.00

Order from IEEE Computer Society Order Dept.
PO Box 80452, Worldway Postal Center
Los Angeles, CA 90060 USA
(714) 821-8380

been fairly easy, since it could be based on the high-speed technology of the random-stroke display terminal. Furthermore, the Seillac-7's system architecture has so accelerated processing that any further increases in speed must depend on increases in the capacity of VLSI elements.

On the other hand, development of the technology for polygon filling and shading operations has just begun. Hardware architecture for ultra-high-speed, general-purpose shading, highlighting, and transparency operations is a field yet to be fully explored. A terminal capable of a wide range of diverse display effects may be achieved in the next five years or so through improvements in VLSI. For the time being, the distribution of functions among software and/or firmware and display hardware like that of the Seillac-7 is a partial solution. ■

Acknowledgments

I wish to thank Professor Tosiyasu Kunii of the University of Tokyo for his valuable suggestions.

References

Tsuneo Ikedo is president of Seillac Co., Ltd., (Tokyo, Japan) and of Seillac Corporation (Carson, California). From 1971 to 1974, he worked in the development of communication control systems at Nippon Electric Co., Ltd. From 1974 to 1981, he was involved in the development of a computer graphics system, a CAD system for prefabrication, the world’s first high-resolution digitizer, and a raster-scan color graphics display device and its data structure at Daini-Seikosha Co., Ltd., where he was the project leader of the Electric Division from 1978 to 1981.

His research interests include high-resolution display devices, hardware technology for solid modeling display, and CAD/CAM workstations.

Ikedo received an MS in electronic engineering from the Tokyo Metropolitan University.

Ikedo’s address is 1-7-6 Onidaka, Ichikawa Chiba, Japan.