Appendix

Our current studio at Pacific Data Images was formed early in 1982. The objective of our three-person group was to produce computer-generated animation for broadcast television and film. In this we feel we have been successful.

Our present animation system has been in development since the studio was formed and was completely designed and implemented in-house. The basic system was built around a small minicomputer, a PDP 11/44, and a 512 x 512 x 32-bit DeAnza IP6400 frame buffer. At the end of 1982, we added a VAX11/750 minicomputer system, a DeAnza IP8500 frame buffer, and an IMI 500 real-time vector display station to our facility; in September 1983, we obtained a Ridge 32 supermini.

As stated earlier, all of our software was written in C under the Unix operating environment. Our selection of Unix and C was dictated by a desire for smooth development and growth. We also use low-resolution raster graphic terminals at our desks for design and preview.

One of our primary goals has always been to develop a state-of-the-art animation system capable of accommodating growth. The ability of the software to be transported to newer and faster computers is essential to the development of a productive and competitive animation capability, and modular design is critical to developing a transforming system. As new animation and image synthesis techniques become available, they will be integrated into our animation system with well-defined interaction.

For more information about our equipment and motion design, see the article by Rosendahl.7

Richard Chuang, vice-president of hardware engineering and technical director at Pacific Data Images, was one of the original designers of PDI's animation system. From 1979-1982, he was a member of the technical staff at Hewlett-Packard's RF and microwave division. His research interests include computer animation system architecture, advance rendering techniques, and design tools. He received a BSEE from the University of California, Davis, in 1979.

Glenn Entis is vice-president of software and technical director at PDI and was one of the developers of the PDI animation system. Prior to joining PDI, he was a software engineer at Hewlett-Packard and at Ampex where he worked on the AVA paint system.

Entis graduated from Ohio Wesleyan University with a BA in philosophy and a BFA in fine arts in 1976 and attended graduate school in computer science at the Polytechnic Institute of New York. He is a member of the IEEE Computer Society and the ACM.

References


December 1983

Cost-effective, reliable filter solutions to RFI/EMI problems

LMI manufactures a broad line of high performance, long life power and communications line filters, filter panels, and power factor correction networks. These are now widely used in shielded rooms, data processing centers, communications centers, hospitals, ground support facilities, shielded cabinets and other secure or RF controlled areas. Our power line filters are designed and manufactured to MIL-F-15733E, UL and other specs; our communications line filters exceed MIL-STD-278. All models have standard power systems, voltages, current and frequency ratings for easy interface with circuit breakers and UL and NEC requirements.

Write or call for catalog F-300. LectroMagnetics, Inc. 6056 West Jefferson Blvd. Los Angeles, CA 90056 (213) 870-9383

LMI LectroMagnetics, Inc.

Reader Service Number 8