book of delightful figures and thought-provoking text. His figures are visual palindromes, self-descriptive, visually ambiguous, or in some other way intriguing.

Why are all the letters of a well-designed font recognizable as belonging to that font while the same letter drawn in different fonts is still obviously not some other letter? In what ways can the containment of some letters within other letters—for example, E contains F—be cultivated? Can advantage be taken of the fact that some letters are symmetric about a vertical axis and others are symmetric about a horizontal axis? What other forms of symmetry do letters exhibit and how can they be used? Do these questions interest you at all? Has Scott Kim found an area to explore that has only amusement potential, or are there some practical applications for exploring our perception of letters? Why does this paragraph consist entirely of questions?

Kim quotes J. S. Bach on music: "There is nothing remarkable about it. All one has to do is hit the right keys at the right time, and the instrument plays itself." Through his unusual art form, Kim wants us to see that there is a creative being hiding within each of us, if we will only try to bring it out. "My favorite reaction to Inversions," he says, "the one I strive for, is simple delight." My reaction was delight, and I trust most other readers will have the same experience.

But does all of this have anything to do with computer graphics? I have personally been interested in characters and their production on computer graphics devices for a very long time. I have noticed that many graphics programmers take an almost perverse delight in the variety of fonts that they can intermix in a single graph, and, frankly, their images suffer for it. The intricacies of variable character spacing, where the intercharacter spacing depends on each character's environment, including its neighbors' sizes and so on, are now even found in drum plotters—the closest thing there is to a moron device in this day of intelligent terminals. So, the interest in characters and fonts is indeed prevalent in the computer graphics field, and readers involved in text can have their horizons broadened through exposure to Kim's book.

Also, computer graphics has the potential to be used as an exploratory tool for this particular art form. Images, once made, can be easily replicated with different transformations applied to them. For example, how would this image look replicated several hundred times in different sizes? Will the color choice affect the power of this image? What if we stretch it out or use a different viewpoint?

In short, the computerized draftsman never gets bored.

Based on the concepts and illustrations in the text, I have produced an attempt at a thought-provoking computer-generated image (at left). What I'm trying to show is that this is a "participation" book; it makes you want to try some letter play yourself. And computer graphics is a good vehicle to explore this rich territory.

Readers particularly interested in mirror questions should refer to Martin Gardner's amusing chapter on the subject in Mathematical Puzzles & Diversions, Simon and Schuster, 1959, pp. 162-173. Two letters reproduced there are especially enlightening.

Thomas Wright
Integrated Software Systems Corporation

Reader Service Number 100

Wanted!
Book Reviewers for IEEE CG&A

If you are interested, contact
Bertram Herzog
Herzog Associates, Inc.
PO Box 3169
Boulder, CO 80307

July 1983