The Computer Conservation Society (CCS) recently celebrated its silver anniversary, so this marks a good point at which to take stock of our achievements over the past 25 years. Our members—more than 1,000 and growing—belong to the world’s largest computer history society, one of the leading sources of expertise in the restoration of historic computers and the construction of replicas.

At the time of the society’s inception in 1989, six working parties were immediately set up. Ever since then, knowledgeable CCS volunteers have been ambitiously, assiduously, and expertly conserving, restoring, and reconstructing historic computers with skill, tenacity, and diligence, unstintingly sharing their technical knowledge and expertise. The list of past and current CCS projects is impressive. There are 16 or so currently active projects and working groups.

The first reconstruction project was a replica of the University of Manchester’s Small-Scale Experimental Machine (SSEM), the world’s first stored-program computer. The replica was ready in 1998 for SSEM’s 50th anniversary. Volunteers continue to maintain the fully working SSEM and demonstrate it to large crowds at the Manchester Museum of Science and Industry (MOSI).

The 1959 vacuum-tube Pegasus was another early machine chosen for restoration. For some 20 years, it was the oldest extant working electronic computer in the world, on public display at London’s Science Museum and maintained and demonstrated regularly by a team of CCS members.

The CCS is a Specialist Group of the British Computer Society, in association with the Science Museum, MOSI, the National Museum of Computing (TNMoC), and the Bletchley Park Trust. Restoring computers or building replicas requires significant space, which the Science Museum provided for the Pegasus restoration. CCS is also grateful to the University of Manchester for providing space for the building of the SSEM replica and subsequently to MOSI for displaying it prominently and supporting other restoration work. CCS’s main activities are now located within the grounds of Bletchley Park at TNMoC, an entity legally distinct from the Bletchley Park Trust.

The CCS has always had strong links with Bletchley Park. The late Tony Sale, cofounder of the CCS with Doron Swade, led the early attempts to save Bletchley Park for the nation when it was threatened with demolition. The links continued as Tony constructed his replica of the wartime Colossus Mark II (see Figure 1), whilst others re-created its predecessor, the electro-mechanical Turing Bombe. The CCS remains committed to ensuring that these two iconic replicas continue to be demonstrated as a tribute to the thousands who worked at Bletchley Park during the war.

The CCS also contributes to the field in other ways:

- Singular engineering achievements in practical computer conservation work worldwide are recognized by the Tony Sale Award, established and managed by the CCS in memory of Tony Sale.
- Resurrection, the CCS quarterly bulletin, records the ongoing project work of the CCS, together with articles and news forming a unique chronicle of computing history.
- An authoritative book by four CCS members entitled Alan Turing and His Contemporaries was published as part of the celebrations marking the centenary of Alan Turing’s birth.
- The CCS website gives information about the society and its program of events. It links to the Our Computer Heritage website, a substantial online CCS database with information on all British-manufactured computers, currently up to 1965.
- Each year presentations by leading experts are given on a range of relevant topics. These presentations, open to all and well-attended, are held at the Science Museum and MOSI. The CCS also organizes its own conferences and symposiums.

The 25th anniversary lecture, entitled “Computer Conservation and Museums: Fight or Flight,” was...
presented by cofounder Doron Swade, who in 1989 was curator of computing at the Science Museum. Swade explained that, when the CCS began, live working exhibits were taken for granted as part of museum visitor expectation. Public display and live demonstration have always been integral to the philosophy motivating our volunteers, with their enthusiasm and dedication to bring restored and reconstructed computers to life by maintaining and demonstrating them. The goal is to show museum visitors what the machines are like in operation. However, these days we are having to learn to work within the museums’ more formal professional environment with limited budgets and resources, justifying working exhibits and the role of restoration and reconstruction projects in terms of the museums’ policies and priorities.

Nevertheless, the CCS is committed to continuing its work as a uniquely valuable resource in restoration, reconstruction, and maintenance and to acquiring and disseminating information about British computing history. Here’s to our next 25 years!

Acknowledgments
Special thanks to Roger Johnson and Doron Swade, on whose original material this article is based.

Reference

Rachel Burnett is an associate lecturer in the Law Program at The Open University, UK, and the chair of the Computer Conservation Society. Contact her at rb@burnett.uk.net.

Banque de France Exposes Its IT Heritage
An exhibition on the history of information technologies just opened in the grandiose conference hall of the Banque de France, in the heart of Paris (see Figure 3). The quality of

![Figure 3. Invitation to the Banque de France spring 2015 exhibition, “Computers and Our Business: Half a Century of Innovation.”](image-url)
the exhibition does not betray the hasty timing of its preparation!

Displaying mainly material and archival pieces from the bank’s collections, this project was initiated and conducted by the director of Information System Transformation, Thierry Bedoin, and the curator, archivist Viviane Fritz.

The Banque de France, founded by Napoleon in 1800, can boast to have been an early adopter of IT systems: It acquired punch-card machines from Powers-Samas, then IBM and Bull, beginning in 1925; its first stored-program computer, an IBM 650 ordinateur with magnetic tapes, in 1958; its first microcomputers in the late 1970s from the Japanese SORD company, followed by a variety of IBM PCs, Apple MacIntoshes, and PET Commodores. The exhibition concludes with the latest mobile phones and top-security data centers. A lively movie sums up 50 years of evolution of information technologies at the bank.

Among the original features displayed, a rare LogAbax 200 accounting machine (restored and lent by a private collector) illustrates the alternative technical solutions that were available at the time of the first computers (see Figure 4). A Unisys (ex-Burroughs) magnetic-coded check sorter also reveals a spectacular side of information technologies, generally ignored outside of the banking industry. The predominance of IBM in the age of mainframes is asserted through several devices, including a terminal equipped with special APL keys.

Beyond machinery, the exhibition describes the evolution of usage and users. The Organization function insists on its control over data processing throughout the history of the bank. The reconstitution of a programmer’s desk of the 1970s, with its array of Cobol manuals and flowchart templates, reveals to younger visitors a forgotten division of labor where programmers worked with paper and pencil, almost without access to computers. A Minitel terminal recalls the early use of a digital network to bypass brick and mortar branches in the relationship between banks and clients.

The exhibition was intended to be open to the public. Yet, for security reasons, only Banque de France employees and guests are allowed to visit it. Later in 2015, the exhibition will move to other facilities and hopefully become more accessible. It is also a first step toward the creation of a virtual, online museum.

This is the second exhibition on the history of information technologies in banks ever organized in France, after the one presented at BNP Paribas in 2013. It will be followed by the exhibition on the history of the smartcard, due to open in June 2015 at the Musée des Arts & Métiers in Paris.

Pierre Mounier-Kuhn is a CNRS researcher at the University of Paris-Sorbonne. Contact him at mounier@msh-paris.fr.