A small but growing body of literature on the history of computational linguistics has emerged over the past few decades. Much of it has focused on language translation—particularly US attempts with automating Russian language translation during the early Cold War. Emblematic of its early focus on translation, the professional organization the Association for Machine Translation and Computational Linguistics (AMTCL) was founded in 1962. In 1968, “Machine Translation” was dropped from its name and the organization became the Association for Computational Linguistics (ACL), reflecting the broadening focus of the discipline.

While often the historical literature in this area has been written from the context of artificial intelligence (AI), computational linguistics (rule-based modeling of natural language using computer technology) is a field that predates AI. Its foundations lay in wartime and early post–World War II mathematical linguistics and information theory. Since the 1960s, computational linguistics has drawn from a vast range of fields—from linguistics, mathematics, AI, and computer science to cognitive science, psychology, anthropology, and neuroscience—and much of the research has been conducted by interdisciplinary teams.

In January 1981, the *Annals* (vol. 3, no. 1) published one of the first major contributions to the historical literature on computational linguistics in S.A. Greibach’s “Formal Languages: Origins and Directions.” Greibach was trained in both linguistics and applied mathematics (PhD, Harvard, 1963). She contributed to Harvard’s project on “Mathematical Linguistics and Automatic Translation,” and engaged in similar research at RAND and System Development Corporation, before joining UCLA’s computer science faculty in 1969. Her article addressed the work of Turing and Post on grammars and machines in the 1930s and 1940s, and contributions by Chomsky, Keene, McCulloch and Pitts, and others in the 1940s and 1950s, before detailing the work at Harvard and elsewhere that she helped contribute to during the 1960s and early 1970s.

More recently, the *Annals* published an article on natural-language processing at Bolt Beranek and Newman (BBN) and a three-part article on IBM’s work with Far Eastern languages. Computational linguist and head of the natural-language processing group at BBN, Ralph Weisschedel, wrote primarily on the history of BBN’s achievements (vol. 28, no. 1, 2006) prior to his arrival in 1984—from the work of J.C.R. Licklider’s “Libraries of the Future Project” and Ross Quillian’s pathbreaking studies on semantic networks for representing meaning of natural language in the 1960s to Bill Wood’s seminal research in the 1970s on what became description logics.

Many of the early efforts in natural-language processing were funded by various agencies of the federal government (Air Force, DARPA, NSF, and so on) and often followed Cold War imperatives. IBM was the leading corporation concentrating on language processing for commercial applications. In the January-March (vol. 27, no. 1) issue of the *Annals*, Kurt Hensch, Toshiaki Igi, Masumi Iwao, Akira Oda, and Toru Takeshita published an important three-part article entitled “IBM History of Far Eastern Languages in Computing.” In the first part, Hensch briefly surveyed complexities and characteristics of the Japanese, Korean, Chinese, and Thai languages, and IBM’s efforts at encoding Japanese characters on the IBM 1401. Hensch et al., in parts 2 and 3, surveyed IBM’s subsequent work with language processing of Japanese between the 1960s and the 1990s.

The following pages of this special issue on the history of Asian language processing offer a wonderful complement to Hensch et al.’s discussion of IBM’s work in Japan by examining the prehistory and history of language processing with Indian, Thai, and Sinhala scripts. Of particular interest, the articles collectively present the history of working with these scripts using earlier technologies (printing presses, typewriters, and so on) before relating the challenges and successes with keyboards, monitors, printing, and networking in the age of digital computers. The text and images of these articles richly illustrate the pioneering activity to address complexity, create standards, and extend the reach of computers through language processing in the minicomputer, personal computer, and World Wide Web eras. Please see Shakrange T. Nandasara and Yoshiki Mikami’s detailed introduction to the three feature articles.

I am grateful to editorial board member and Events and Sightings editor Chigusa Kita for helping to recruit this special issue and to Shakrange Nandasara and Yoshiki Mikami for their contributions and leadership in assembling these important selections extending our knowledge of the history of Asian language processing.

Readers may contact Jeffrey R. Yost at yostx003@umn.edu.