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Abstract—A complex problem when outsourcing data to the cloud is access control management. Encryption, by wrapping data with a
self-enforcing protection layer, provides access control enforcement by making resources intelligible only to users holding the
necessary key. The real challenge becomes then the efficient revocation of access. We address this challenge and present an
approach to effectively and efficiently enforce access revocation on resources stored at external cloud providers. The approach relies
on a resource transformation that provides strong mutual inter-dependency in its encrypted representation. To revoke access on a
resource, it is then sufficient to update a small portion of it, with the guarantee that the resource as a whole (and any portion of it) will
become unintelligible to those from whom access is revoked. Our experimental results show the effectiveness of our approach, and
confirm its efficiency, especially when managing large resources with dynamic access policy.

Index Terms—Access control; Access revocation; Resource encryption; Mix&Slice

✦

1 INTRODUCTION

W ITH the considerable advancements in Information
and Communication Technologies solutions, users

and companies are finding increasingly appealing to rely
on external services for storing resources and making them
available to others. In such contexts, a promising approach
to enforce access control to externally stored resources is
via encryption: resources are encrypted for storage and only
authorized users have the keys that enable their decryp-
tion. There are several advantages that justify the use of
encryption for enforcing access control. First, robust en-
cryption has become computationally inexpensive, enabling
its introduction in domains that are traditionally extremely
sensitive to performance (like cloud-based applications and
management of large resources). Second, encryption pro-
vides protection against the service provider itself. While
trustworthy for providing storage and access functionality,
the provider cannot typically be considered authorized to
know the content of the resources it stores (honest-but-
curious scenario [2], [3], [4]) and hence neither to enforce
access control. Third, encryption solves the need of having a
trusted party for policy enforcement: resources enforce self-
protection, since only authorized users, holding the keys,
will be able to decrypt them.
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A preliminary version of this paper appeared under the title “Mix&slice: Effi-
cient access revocation in the cloud,” in Proc. of the 23rd ACM Conference
on Computer and Communications Security (CCS 2016) [1]

One of the complex aspects in using encryption to en-
force access control concerns access revocation. If granting
an authorization is easy (it is sufficient to give the newly au-
thorized user access to the key for decrypting the resource),
revoking an authorization is a completely different problem.
There are essentially two approaches to enforce revocation:
i) re-encrypt the resource with a new key or ii) revoke access
to the key itself. Re-encryption of the resource entails, for the
data owner, downloading the resource, decrypting it and
re-encrypting it with a new key, re-uploading the resource,
and re-distributing the key to the users who still hold
authorizations. If decryption, re-encryption, and even key
management (for this specific context) can be supported by
current technologies, the remaining challenge is represented
by the need to download and re-upload the resource, with
a considerable overhead for the data owner. This overhead
will continue to grow as usage of cloud resources grows, in
particular in the context of emerging big data applications.
The alternative approach of enforcing revocation on the
resource by preventing access to the key with which the
resource is encrypted cannot be considered a solution. As
a matter of fact, it protects the key, not the resource itself,
and it is inevitably fragile against a user who - while having
been revoked from an access - has maintained a local copy
of the key.

Our approach. In this paper, we present a novel approach
to enforce access revocation that provides efficiency, as
it does not require expensive upload/re-upload of (large)
resources, and robustness, as it is resilient against the threat
of users who might have maintained copies of the keys pro-
tecting resources on which they have been revoked access.

The basic idea of our approach is to provide an en-
crypted representation of the resources that guarantees
complete interdependence (mixing) among the bits of the
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encrypted content, meaning that each bit in the resulting
encrypted content depends on every bit of the original
plaintext content. In this way, unavailability of even a small
portion of the encrypted version of a resource completely
prevents the reconstruction of the resource or even of por-
tions of it. Brute-force attacks guessing possible values of
the missing bits are possible, but even for small missing por-
tions of the encrypted resource, the required effort would be
prohibitive. The classical all-or-nothing transform (AONT) [5]
considers similar requirements, but the techniques proposed
for it are not suited to our scenario. AONT approaches
are based on the assumption that keys are not known to
users, whereas in our scenario revoked users can know the
encryption key and may plan ahead to locally store critical
pieces of information.

Our approach trades off between the requirement to con-
nect all bits of a resource (to provide the desired interdepen-
dency of the content), and the requirement to maintain fine-
grained access of the resource itself (to enable authorized
retrieval of portions of the resource). This is a particular
challenge due to the potentially huge size of the resources.
To achieve this, we apply the idea of mixing content within
portions of the resource, enforcing then revocation by over-
writing encrypted bits in every such portion. Before mixing,
our approach partitions the resource in different, equally
sized, chunks, called macro-blocks. Then, as the name hints,
it is based on the following concepts.

• Mix: the content of each macro-block is processed
by a carefully designed bit-mixing approach that en-
sures, at the end of the process, that every individual
bit in the input has had an impact on each of the bits
in the encrypted output.

• Slice: the mixed macro-blocks are sliced into frag-
ments so that each fragment includes bits from each
macro-block of the resource. Fragments represent a
minimal (in terms of number of bits of protection,
which we call mini-block) unit of revocation: lack
of any single fragment of the resource completely
prevents reconstruction of the resource or of portions
of it.

To revoke access from a user, it is sufficient to re-encrypt
one (any one) of the resource fragments with a new key
not known to the user. The advantage is clear: re-encrypting
a tiny chunk of the resource guarantees protection of the
whole resource itself. Also, the service provider simply
needs to provide storage functionality and is not required to
play an active role in enforcing access control or providing
user authentication. Our Mix&Slice proposal is comple-
mented with a convenient approach for key management
that, based on key regression, avoids any storage overhead
for key distribution.

A preliminary version of this work appeared in [1]. In
this paper, we extend our proposal with a more general
approach to mixing by considering also the application
of the Optimal Asymmetric Encryption Padding (OAEP),
discussing two strategies for such a solution. We also extend
the analysis of the effectiveness of our approach to cover
erasure code attacks. Finally, we extend the experimental
evaluation, where we evaluate the performance of our ap-
proach in terms of the throughput at the client-side for the

application of our protection technique, and the efficiency
in policy revocation.

Outline. The remainder of the paper is organized as follows.
Section 2 illustrates the basic concepts of our approach,
the working of mixing and slicing, and the properties they
need to satisfy to enable effective revocation. Section 3
illustrates two main approaches to realize mixing, based on
the iterative application of AES and on an extended 3-round
OAEP, respectively. Section 4 illustrates the enforcement
of access revocation. Section 5 discusses the effectiveness
of our solution in providing revocation, considering its
resilience against storage attacks by users who might main-
tain some local storage of previously accessed fragments or
an erasure code on the resource. Section 6 illustrates our
implementation and experimental evaluation, to measure
the throughput of mixing as well as of access and update
requests, confirming the advantages and applicability of our
approach. Section 7 discusses related work. Finally, Section 8
presents our conclusions.

2 MIX & SLICE

We introduce the concepts of block, mini-block, and macro-
block (Section 2.1) at the basis of our approach, and then
illustrate the working of mixing (Section 2.2) and slicing
(Section 2.3).

2.1 Blocks, mini-blocks, and macro-blocks

The basic building block of our approach is the application
of a transformation that maps input data onto output data
in a way that all bits of the output depend on all bits in
the input. Such a transformation can be realized with either
a cryptographic hash function or a symmetric block cipher.
A cryptographic hash function is a non invertible function
that transforms an input into an output such that every
bit of the input has effect on every bit of the output. A
symmetric block cipher guarantees complete dependency
of the encrypted result from every bit of the input and
the impossibility, when missing some bits of an encrypted
version of a block, to retrieve the original plaintext block
(even if parts of it are known). The only possibility to
retrieve the original block would be to perform a brute-force
attack attempting all the possible combinations of values for
the missing bits. For instance, modern encryption functions
like AES guarantee that the absence of i bits from the input
(plaintext) and of o bits from the output (ciphertext) does
not permit, even with knowledge of the encryption key
k, to properly reconstruct the plaintext and/or ciphertext,
apart from performing a brute-force attack generating and
verifying all the 2min(i,o) possible configurations for the
missing bits [6].

Clearly, the larger the number of bits that are missing in
the encrypted version of a block, the larger the effort needed
to perform a brute-force attack, which requires attempting
2x possible combinations of values when x bits are missing.
Such number of missing bits is the security parameter at the
center of our approach and represents the atomic unit of
protection. We then explicitly identify the following basic
concepts.
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Fig. 1. An example of mixing of a macro-block with 16 mini-blocks
[0] . . . [15]

• Block: a sequence of bits input to a block cipher
or a cryptographic function (it corresponds to the
classical block concept).

• Mini-block: a sequence of bits, of a specified length,
contained in a block. It represents our atomic unit of
protection (i.e., when removing bits, we will operate
at the level of mini-block removing all its bits).

• Macro-block: a sequence of blocks. It allows extending
the application of a block cipher on sequences of
bits larger than individual blocks. In particular, our
approach operates by mixing bits at the macro-block
level, extending protection to work against attacks
beyond the individual block.

Our approach is completely parametric with respect
to the size (in terms of the number of bits) that can be
considered for blocks, mini-blocks, and macro-blocks. The
only constraints are for the size of a mini-block to be a
divisor of the size of the block (aspect on which we will
elaborate later on) and for the size of a macro-block to be
a product of the size of a mini-block. In the following, for
concreteness and simplicity of the figures, we will illustrate
our examples assuming blocks of 128 bits and mini-blocks of
32 bits, which corresponds to having 4 mini-blocks in every
block. In the following, we will use msize, bsize, Msize to
denote the size (in bits) of mini-blocks, blocks, and macro-
blocks, respectively. We will use bj [i] (Mj[i], resp.) to denote
the i-th mini-block in a block bj (macro-block Mj, resp.). We
will simply use notation [i] to denote the i-th mini-block in a
generic bit sequence (be it a block or macro-block), and [[j]]
to denote the j-th block. In the mixing process, a subscript
associated with a mini-block/block denotes the round that
produced it.

2.2 Mixing
Our mixing has the objective of producing an encrypted
version of a resource in a way that each bit in the en-
crypted representation depends on every bit of the plaintext
resource. As already noted, a block cipher provides mixing
only at the level of block. For instance, given a sequence
of 16 mini-blocks ([0], . . . , [15]), the application of a block
cipher working on blocks of 4 mini-blocks each provides
mixing among mini-blocks [0] . . . [3], [4] . . . [7], [8] . . . [11],
and [12] . . . [15], respectively. Absence of a mini-block from

the result will prevent reconstruction only of the plaintext
block including it, while not preventing the reconstruction
of all the other blocks. For instance, with reference to our ex-
ample, absence of [0] in the result of the block cipher applied
over the first block [0] . . . [3], will prevent reconstruction
of such first block but will not prevent reconstruction of
the other three blocks (mini-blocks [4], . . . , [15]). Protection
at the block level is clearly not sufficient in our context,
where we expect to manage resources of arbitrarily large
size and aim to provide the guarantee that the lack of any
individual mini-block in the encrypted representation of a
resource implies the impossibility (apart from performing a
brute-force attack) of reconstructing any other mini-block of
the corresponding plaintext resource. The concept of macro-
block allows us to provide mixing on an arbitrarily long
sequence of bits (going much above the size of the block).
An interpretation of mixing is that it extends the ability of
protecting the correspondence between input and output of
a block cipher to blocks of arbitrary size.

Figure 1 illustrates our mixing applied to a macro-block
composed of 16 mini-blocks [0] . . . [15]. The pattern-coding
in the figure shows that the 16 output mini-blocks depend
on each of the 16 input mini-blocks.

To provide an effective and robust support to the en-
forcement of access revocation, mixing must satisfy the
following properties.

• Complete mixing: every bit in the input macro-block
of the mixing must cryptographically affect every bit
of the output macro-block.

• Arbitrary macro-block size: mixing should operate on
macro-blocks of arbitrarily large size.

• No-shrinking effect: the output of mixing, as well any
of its intermediate results or observable state must
not be smaller than the size of the input macro-block.

Complete mixing guarantees the complete dependency
of each output bit from each input bit, and hence the impos-
sibility of reconstructing the plaintext macro-block, or parts
of it, when even a small portion (mini-block) of its mixed
version is missing. As previously discussed, in this case the
only possibility is the application of a brute-force attack.
Since such a property is guaranteed at the level of macro-
block, the second property requires no limitation on the
size of the macro-block (e.g., trivially a solution operating
complete mixing but with a macro-block of the size of a
block would not be acceptable). This property permits the
management of an efficient access revocation on resources of
arbitrarily large size (Section 6). The last property imposes
the size of the output and intermediate results of the process
to be not smaller than the size of the input. The motivation
for this is that an output or an intermediate result of smaller
size would be advantageous to users, who could be able to
store such compact information to reconstruct (part of) the
input macro-block of a resource to which they have been
revoked access. Ensuring the size of intermediate results
does not decrease at any step of the process counteracts this
threat (Section 5).

When resources are extremely large, or when access to a
resource involves only a portion of it, considering a whole
resource as a single macro-block may be not desirable.
Indeed, mixing the whole resource as a single macro-block
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Fig. 2. Mix&Slice: from resource to fragments

implies its complete download at every access, when this
might actually not be needed for service.

Accounting for this, we do not assume a resource to
correspond to an individual macro-block, but assume in-
stead that any resource can be partitioned into M macro-
blocks, which can then be mixed independently. The choice
of the size of macro-blocks should take into consideration
the performance requirements of both the data owner (for
encryption) and of clients (for decryption), and the possible
need to serve fine-grained retrieval of content (i.e., enabling
authorized access of portions of the resource). This re-
quirement can be efficiently accommodated independently
encrypting (i.e., mixing) different portions of the resource,
which can be downloaded and processed independently
(we will discuss this in Section 6).

Encryption of a resource would then entail a preliminary
step cutting the resource in different, equally sized, macro-
blocks on which mixing operates. To ensure the mixed
versions of macro-blocks be all different, even if with the
same original content, the first block of every macro-block
is XOR-ed with an initialization vector (IV) before starting the
mixing process. Since mixing guarantees that every block in
a macro-block influences every other block, the adoption of
a different initialization vector for each macro-block guar-
antees indistinguishability among their encrypted content.
The different initialization vectors for the different blocks
can be obtained by randomly generating a vector for the first
macro-block and then incrementing it by 1 for each of the
subsequent macro-blocks in the resource, in a way similar
to the CTR encryption mode [7]. Figure 2(a) illustrates such
process.

2.3 Slicing

The starting point for introducing mixing is to ensure that
each single bit in the encrypted version of a macro-block
depends on every other bit of its plaintext representation,
and therefore that removing any one of the bits of the
encrypted macro-block would make it impossible (apart
from brute-force attacks) to reconstruct any portion of the
plaintext macro-block. Such a property operates at the level
of macro-block. Hence, if a resource (because of size or
need of efficient fine-grained access) has been partitioned
into different macro-blocks, removal of a mini-block would
only guarantee protection of the macro-block to which it

Mix&Slice
1: cut R in M macro-blocks M0, . . . ,MM−1

2: apply padding to the last macro-block MM−1

3: IV := randomly choose an initialization vector
4: for i = 0, . . . ,M − 1 do /* encrypt macro-blocks */
5: Mi[[1]] := Mi[[1]] ⊕ IV /* XOR the first block with the IV */
6: Mix(Mi) /* one of: AES-Mix, OAEP-Mix, ROAEP-Mix */
7: IV := IV + 1 /* initialization vector for the next macro-block */
8: for j = 0, . . . , f − 1 do /* slicing */
9: Fj[i] := Mi[j]

Fig. 3. Mix&Slice: from resource R to fragments

belongs, while not preventing reconstruction of the other
macro-blocks (and therefore partial reconstruction of the
resource). Resource protection can be achieved by removing
a mini-block for each macro-block of which the resource is
composed. This observation brings us to the second concept
giving the name to our approach, which is slicing. Slicing the
encrypted resource consists in defining different fragments
such that: i) every fragment contains a mini-block for each
macro-block of the resource, ii) no two fragments contain
the same mini-block, and iii) for every mini-block there is
a fragment that contains it. To ensure all this, as well as to
simplify management, we slice the resource simply putting
in the same fragment the mini-blocks that occur at the same
position in the different macro-blocks. Figure 2(b) illustrates
the slicing process. Slicing and fragments are defined as
follows.
Definition 2.1 (Slicing and fragments). Let R be a resource

and M0, . . . ,MM−1 be its (individually mixed) macro-
blocks, each composed of f mini-blocks. Slicing produces
f fragments for R where Fi = ⟨M0[i], . . . ,MM−1[i]⟩, with
i = 0, . . . , f − 1.

Figure 3 illustrates the Mix&Slice procedure for encrypt-
ing a resource R. R is first cut into M macro-blocks, a
padding is then applied to the last macro-block, and an
initialization vector is randomly chosen. The first block
of each macro-block is then XOR-ed with the initialization
vector, which is incremented by 1 for each macro-block.
The macro-block is then encrypted with a mixing process
(Section 3). Encrypted macro-blocks are finally sliced into
fragments. In the next section, we elaborate on the mixing
step (line 6) of such a process.

3 MIXING

We present two strategies to produce a mixing that satisfies
the properties discussed in Section 2.2, that is: complete
mixing, support for macro-blocks of arbitrary size, and no-
shrinking effect. The first strategy (Section 3.1) leverages the
AES block cipher and aims at providing efficient mixing of
large macro-blocks, also thanks to the wide availability of
the hardware implementation of AES. The second strategy
(Section 3.2) is based on OAEP, to the aim of supporting
large mini-blocks (beyond the size that the more efficient
AES-based approach can support), hence increasing the size
of the atomic unit of protection provided by mixing.

3.1 AES Mixing
Our first proposal for enforcing complete mixing of the
bits in a macro-block extends the mixing provided at the
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Fig. 4. An example of AES mixing (encrypt mode) of 16 mini-blocks
assuming m = 4

block-level by AES to the macro-block granularity. Our
strategy provides mixing by iteratively applying AES on
different portions of the macro-block to guarantee complete
dependency of the bits of the output from all the bits in
the input. The basic step of our approach (on which we
will iteratively build to provide complete mixing within a
macro-block) is then the application of encryption at the
block level. The idea is to iteratively apply block encryption
on, at each round, blocks composed of mini-blocks that
are representative (i.e., belong to the result) of different
encryptions in the previous round.

Before giving the general definition of our approach, let
us discuss the simple example of two rounds illustrated
in Figure 4, where the first row reports a sequence of 16
mini-blocks ([0], . . . , [15]) composing 4 blocks (i.e., each
block is composed of m=4 mini-blocks) and the second row
reports the mini-blocks ([0]1, . . . , [15]1) resulting from the
first round. As visible from the pattern-coding in the figure,
encryption provides mixing within each block so that each
mini-block in the result depends on every mini-block in
the same input block. In other words, each [i]1 depends on
every [j]0 with (i div 4) = (j div 4). The second round applies
again block encryption, considering different blocks each
composed of a representative of a different computation
in the first round. To guarantee such a composition, we
define the blocks input to the four encryption operations
as composed of mini-blocks that are at distance 4 (i.e., the
number m of mini-blocks in each block) in the sequence,
hence considering as input a mini-block from each of all the
different encryption operations in the previous round. The
blocks considered for encryption are then ⟨[0]1[4]1[8]1[12]1⟩,
⟨[1]1[5]1[9]1[13]1⟩,⟨[2]1[6]1[10]1[14]1⟩,⟨[3]1[7]1[11]1[15]1⟩.
The result is a sequence of 16 mini-blocks, each of which
is dependent on each of the 16 original mini-blocks, that
is, the result provides mixing among all 16 mini-blocks.
With 16 mini-blocks, two rounds of encryption suffice for
guaranteeing mixing among all of them. Providing mixing
for larger sequences clearly requires more rounds.

This brings us to the general formulation of our ap-
proach operating at the level of macro-block of arbitrar-
ily large size (the example just illustrated being a macro-
block of 16 mini-blocks). Providing mixing of a macro-block

AES-Mix(M)
1: for i := 1, . . . , x do /* at each round i */
2: span := mi /* number of mini-blocks in a mixing */
3: distance := mi−1 /* leg of mini-blocks input to an encryption */
4: for j := 0, . . . , b − 1 do /* each j is an encryption */

/* identify the input to the j-th encryption picking, */
/* within each span, mini-blocks at leg distance */

5: let block be the concatenation of all mini-blocks [l]
6: s.t. (l mod distance) = j and (j ·m) div span = l div span
7: [[j]]i := E(k, block) /* write the result as the j-th block in output */

Fig. 5. AES mixing of a macro-block M

composed of b blocks with b=mx−1 requires x rounds of
encryption each composed of b encryptions. Each round
allows mixing among a number span of mini-blocks that
multiplies by m at every round. At round i, each encryption
j takes as input m mini-blocks that are within the same span
(i.e., the same group of mi mini-blocks to be mixed) and at
a distance (mi−1).

To ensure the possibility of mixing, at each round,
blocks composed of mini-blocks resulting from different
encryption operations of the previous round, we assume a
macro-block composed of a number of mini-blocks, which
is the power of the number (m) of mini-blocks in a block.
For instance, with reference to our running example where
blocks are composed of 4 mini-blocks (i.e., m=4), macro-
blocks can be composed of 4x mini-blocks, with an arbitrary
x (x=2 in the example of Figure 4). The assumption can be
equivalently stated in terms of blocks, where the number of
blocks b will be 4x−1. Any classical padding solution can be
employed to guarantee such a requirement, if not already
satisfied by the original bit sequence in input. Figure 5
illustrates the mixing procedure. To illustrate, consider the
example in Figure 4, where blocks are composed of 4 mini-
blocks (m=4) and we have a macro-block of 16 mini-blocks,
that is, 4 blocks (b=4). Mixing requires x = 2 rounds of
encryption (16 = 42), each composed of 4 (b) encryptions
operating on 4 (m) mini-blocks. At round 1, the span is 4
(i.e., mixing operates on chunks of 4 mini-blocks) and mini-
blocks input to an encryption are taken at distance 1 within
each span. At round 2, the span is 16 (all mini-blocks are
mixed) and mini-blocks input to an encryption are taken
at distance 4 within each span. Let us consider, another
example, a macro-block composed of 64 mini-blocks (i.e.,
16 blocks). Mixing requires 3 rounds. The first two rounds
would work as before, with the second round producing
mixing within chunks of 16 mini-blocks. The third round
would then consider a span of all the 64 mini-blocks and
mini-blocks input to an encryption would be the ones at
distance 16. At each round i, mini-blocks are mixed among
chunks of mi mini-blocks, hence ensuring at round x, mixing
of the whole macro-block composed of mx mini-blocks.

Figure 6 captures this concept by showing the mixing
of the content of the first ([0]) and last ([63]) mini-blocks
of the macro-block at the different rounds, given by the
encryption to which they (and those mini-blocks mixed with
them in previous rounds) are input, showing also how the
two meet at the step that completes the mixing. Note that,
while for simplicity the figure pictures only propagation of
the content of two mini-blocks, every mini-block actually
carries along the content of all the mini-blocks with which
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Fig. 7. An example of AES mixing (decrypt mode) of 16 mini-blocks
assuming m=4 and the absence of mini-block [5]2

it mixed in previous rounds. Given a macro-block M with
mx mini-blocks (corresponding to b blocks), the following
two properties hold: 1) a generic pair of mini-blocks [i] and
[j] mix at round r with i div mr = j div mr , and 2) x
rounds bring complete mixing. In other words, the number
of encryption rounds needed to mix a macro-block with m·b
mini-blocks is logm (m·b).

The AES mixing illustrated above satisfies all the prop-
erties discussed in Section 2.2. In particular, complete mixing
is guaranteed since the number of bits that are passed from
each block in a round to each block in the next round is equal
to the size of the mini-block. This guarantees that the uncer-
tainty introduced by the absence of a mini-block at the first
round (2msize ) maps to the same level of uncertainty for each
of the blocks involved in the second round, and iteratively
to the next rounds, thanks to the use of AES at each iteration.
This implies that with logm (m·b) rounds, that is, the rounds
requested by our technique, a complete mixing of the macro-
block is achieved. Consequently, the absence of a mini-
block from the resulting encrypted macro-block will prevent
reconstruction of the whole plaintext macro-block. As an
example, consider Figure 7, where the first row reports
the 16 encrypted mini-blocks obtained from the mixing in

Figure 4, and suppose that mini-block [5]2 (i.e., the mini-
block represented with a uniform gray background) is miss-
ing. The figure shows that the absence of this mini-block
prevents the decryption of block ⟨[4]2[5]2[6]2[7]2⟩, which in
turns prevents the reconstruction of block ⟨[1]1[5]1[9]1[13]1⟩,
which finally prevents the reconstruction of all the plaintext
blocks (i.e., all mini-blocks [0]0, . . . , [15]0). Such complete
mixing clearly applies to macro-blocks of arbitrary size (the
condition that the number mini-blocks be a power of the
number m of mini-blocks in a block can be easily achieved
through padding). Finally, AES mixing also guarantees no-
shrinking effect, in fact the representation after each round
has the same size as the original macro-block. Users aiming
at reconstructing a resource they cannot access would then
have no benefit in attacking one round compared to another
(see Section 5).

3.2 OAEP Mixing
Our second proposal for enforcing complete mixing of a
macro-block is based on an extended 3-round version of
the Optimal Asymmetric Encryption Padding (OAEP) [8].
OAEP is a standard padding for RSA that operates on
plaintext data and adds randomness to encryption, thus
providing higher security guarantees. Figure 8 illustrates
the structure that characterizes the classical OAEP. Given
two cryptographic hash functions G and H (which can
also be identical), and two plaintext input L and R (i.e.,
a padded message and a random seed), OAEP computes its
output as (G(R)⊕ L)∥H((G(R)⊕ L)⊕ R), where ⊕ is the
XOR operator and ∥ is the concatenation of two bit-strings.
Although OAEP can be used to build an All-Or-Nothing
Transform resistant to chosen-plaintext attacks [9], this basic
OAEP structure with 2 rounds does not guarantee every
bit of the input to cryptographically affect each bit of the
resulting output (i.e., it does not guarantee complete mixing
as discussed in Section 2.2). For instance, as visible in Fig-
ure 8, the change of a bit in L (i.e., the left input in the figure)
impacts all the bits in the right part of the OAEP output, but
it only impacts the bit in the same position in the left part of
the OAEP output, while not affecting the other bits in the left
part. To perform complete mixing, we apply an extended 3-
round OAEP as illustrated in Figure 9, where mix denotes
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Fig. 8. Classical OAEP structure

L R

mix

mix

mix

Fig. 9. OAEP with complete mixing

the transformation (cryptographic hash functions G and H
in the original OAEP), on which we elaborate next, which
is applied at each round. Indeed, 3 rounds are necessary,
but also sufficient, to create a pseudorandom permutation,
ensuring complete mixing.1

With 3-round OAEP ensuring complete mixing, we need
then to consider the other two properties that must be
ensured by mixing, that is, support for macro-blocks of
arbitrary size and no-shrinking effect. Before discussing the
mixing function to guarantee these properties we make a
note on the input and final step to produce output for the
application of OAEP mixing. As for input, plaintext L and
R to be considered as input are obtained by splitting the
plaintext input in two parts of the same size, so to ensure
the no-shrinking effect and maximize protection guarantees.
As for output, we note that being a padding scheme based
on cryptographic hash functions, OAEP does not provide
data confidentiality (which is instead provided by AES-Mix
already during the mixing process). Therefore, the OAEP
output must be encrypted (e.g., for this last step our im-
plementation uses AES in counter mode [11]). As for the
mixing function, since the functions (i.e., G and H) at the
different rounds can be identical, we simply assume to use
the same function (mix in Figure 9) in all the three rounds of
our OAEP mixing.

An easy way to use a 3-round OAEP mixing that pro-
vides complete mixing while ensuring no-shrinking effect

1. A 4-round OAEP produces a super pseudorandom permuta-
tion [10] resistant to an adversary with oracle access to its inverse
permutation. This is not needed to create an AONT and would impact
the efficiency of mixing.

macroblock

mixed

ciphertext

encrypt

L R

Fig. 10. OAEP mixing with internal layered structure

would be to use, as mix function, a cryptographic hash
function with an input of size equal to the size of the
output. In fact, this constraint would maintain the size of the
input and output constant throughout all the process. The
adoption of a cryptographic hash function to implement our
mix function, however, limits the size of the input macro-
block to be (at most) twice the size of the output of the
selected cryptographic hash function, hence not supporting
macro-blocks of arbitrary size. The support of macro-blocks
of arbitrarily large size could be achieved by using a stream
cipher with initial seeds as mix function. In fact, the stream
cipher can produce any required number of bits needed for
the XOR operation with the half of a macro-block, meaning
that we can accommodate input and output of arbitrary size.
However, the seeds used in the computation are compact
in size, and hence their use would violate the no-shrinking
effect property that the mix transformation needs to ensure.
In the remainder of this section, we illustrate two possible
approaches for the mix function that enforce complete mix-
ing, while guaranteeing both support for macro-blocks of
arbitrary size and no-shrinking effect.

OAEP-Mix. Our first approach uses our AES-Mix structure
discussed in Section 3.1 as mix function, with the only differ-
ence of using a cryptographic hash function instead of AES
for mixing mini-blocks coming from different blocks at each
round (i.e., the circled E in Figure 4 and line 7 in Figure 5).
The resulting process is illustrated in Figure 10, where the
mix function of Figure 9 has been instantiated to be the lay-
ered process in Figure 4, and the last step of encryption has
been included. The layered structure of AES-Mix guarantees
complete mixing, supports macro-blocks of arbitrary size,
and satisfies the no-shrinking effect. Figure 11 shows the
pseudo-code of OAEP-Mix. Note that, while in the pseudo-
code, for simplicity we have maintained the internal call to
AES-Mix (Figure 5), as noted the last step at each round of
AES-mix is in this case the application of a cryptographic
hash function, instead of AES encryption. The reason for
this is that the mix function needs not be invertible, since in
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OAEP-Mix(M)
1: Let M=LR s.t. size(L)=size(R) /* left (L) and right (R) half of M */
2: L1 := L ⊕ AES-Mix(R) /* first round */
3: R1 := AES-Mix(L1) ⊕ R /* second round */
4: L2 := L1 ⊕ AES-Mix(R1) /* third round */
5: M := L2 ||R1 /* mixed macroblock */
6: E(k,M) /* mixed and encrypted macroblock */

Fig. 11. OAEP mixing of a macro-block M

the OAEP approach encryption is applied at the end of the
mixing process. Hence, there is no need to encrypt at each
step as AES does and the application of a cryptographic
hash function (e.g., BLAKE2 [12] in our implementation) in
a way that guarantees no-shrinking effect is sufficient. The
advantage of using a cryptographic hash function instead of
AES is efficiency of the computation and the possibility of
using larger blocks and setting larger values for the mini-
block size (e.g., 512 bits for bsize and up to 256 bits for msize
when using BLAKE2, in contrast to 128 bits for bsize and up
to 64 bits for msize when using AES), thus possibly reducing
the number of rounds needed for performing a complete
mix of the input. By using the layered structure of AES-
Mix as mix function, the input macro-block must include
b = 2 · (bsize/msize)x−1 blocks, with bsize the size of the
output of the adopted cryptographic hash function, thus
requiring x rounds for the internal AES-Mix. For instance,
assuming a macro-block of size Msize=16.384 bits, blocks of
size bsize=512 bits, and mini-blocks of size msize=32 bits, the
mix function based on BLAKE2 needs 2 rounds only (i.e.,
b = 2 ·161) in contrast to 4 rounds necessary when adopting
AES with then bsize=128 bits (i.e., b = 2 · 43).

ROAEP-Mix. Our second approach uses the 3-round OAEP
structure as mix function, thus building a recursive OAEP
structure. This is illustrated in Figure 12, where the mix
function of Figure 9 has been instantiated to be again the
process in Figure 9 itself, and as before the last step of
encryption has been included. Figure 13 shows the pseudo-
code of ROAEP-Mix. By using recursive OAEP mixing, the
input macro-block must include b = 2x = (Msize/bsize)
blocks, with bsize the size of the output of the adopted
cryptographic hash function, thus requiring x recursive
applications of the 3-round OAEP structure. The main ad-
vantage of the ROAEP-Mix with respect to AES-Mix and
OAEP-Mix is the flexibility in the definition of the mini-
block size (msize). For AES-Mix and OAEP-Mix, the largest
msize is 64 bits (half the size of the AES block) and half
the size of the output of the selected hash function (e.g.,
256 bits in our implementation with BLAKE2), respectively.
For ROAEP-Mix, the largest mini-block size corresponds to
the size of the output of the selected cryptographic hash
function (e.g., 512 bits in our implementation). This provides
stronger protection against brute-force attacks. While in
most application scenarios the use of AES-Mix (and 32 or
64 bits for the mini-block size) can be appropriate, some
applications may want more flexibility, especially if having
larger mini-blocks does not have a significant impact on
performance. We note that block ciphers (e.g., AES) are often
implemented by dedicated circuits within many modern
CPUs and the throughput exhibited by their hardware-

macroblock

mixed

ciphertext

encrypt

L R

Fig. 12. Recursive OAEP mixing

ROAEP-Mix(M)
1: Let M=LR s.t. size(L)=size(R) /* left (L) and right (R) half of M */
2: if Msize/2 = bsize /* L and R can be input of the mix function */
3: then L1 := L ⊕ mix(R) /* first round */
4: R1 := mix(L1) ⊕ R /* second round */
5: L2 := L1 ⊕ mix(R1) /* third round */
6: else L1 := L ⊕ ROAEP-Mix(R) /* first round */
7: R1 := ROAEP-Mix(L1) ⊕ R /* second round */
8: L2 := L1 ⊕ ROAEP-Mix(R1) /* third round */
9: if Msize = b · bsize

10:then return(E(k,L2 ||R1)) /* mixed and encrypted macroblock */
11:else return(L2 ||R1) /* mixed macroblock */

Fig. 13. Recursive OAEP mixing of a macro-block M

accelerated computation is better than the software compu-
tation of cryptographic hash functions, as confirmed by our
experiments (Section 6). As CPU architectures evolve with
hardware acceleration of hash functions, similar advantages
will also be enabled for the recursive application of OAEP.

4 ACCESS MANAGEMENT

Accessing a resource (or a macro-block in the resource,
resp.) requires availability of all its fragments (its mini-
blocks in all the fragments, resp.), and of the key used for
encryption. Policy changes corresponding to granting access
to new users can be simply enforced, as usual, by giving
them the encryption key. In principle, policy changes cor-
responding to revocation of access would instead normally
entail downloading the resource, re-encrypting it with a new
key, re-uploading the resource, and distributing the new
encryption key to all the users who still hold authorizations.
Our approach enables the enforcement of access revocation
to a resource by simply making any of its fragments un-
available to the users from whom the access is revoked.
Since lack of a fragment implies lack of a mini-block for
each macro-block of a resource, and lack of a mini-block
prevents reconstruction of the whole macro-block, lack of
a fragment equates to complete inability, for the revoked
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Fig. 14. An example of fragments evolution

users, to reconstruct the plaintext resource or any portion of
it. In other words, it equates to revocation.

Hence, access revocation can be enforced by the data
owner by randomly picking a fragment, which is then
downloaded, re-encrypted with a new key (which will be
made known only to users still authorized for the access),
and re-uploaded at the server overwriting its previous
version. While still requesting some download/re-upload,
operating on a fragment clearly brings large advantages (in
terms of throughput) with respect to operating on the whole
resource (see Section 6). Revocation can be enforced on any
randomly picked fragment (even if already re-written in a
previous revocation) and a fresh new key is employed at
every revoke operation. Figure 14 illustrates an example of
fragments evolution due to the enforcement of a sequence of
revoke operations. Figure 14(a) is the starting configuration
with the original fragments computed as illustrated in Sec-
tion 2. Figure 14(b-d) is the sequence of rewriting to enforce
revocations, which involve, respectively: fragment F10, re-
encrypted with key k1; fragment F4, re-encrypted with key
k2; and fragment F10 again, now re-encrypted with key k3.
In the following, we use notation F

j
i to denote a version of

fragment Fi encrypted with key kj , being F0
i the version of

the fragment resulting from the application of the Mix&Slice
process. In the figure, the resource is represented in a three-
dimensional space, with axes corresponding to fragments,
macro-blocks, and keys. The re-writing of a fragment is
represented by placing it in correspondence to the new key

used for its encryption. The shadow in correspondence to
the previous versions of the fragments denotes the fact that
they are not available anymore as they are overwritten by
the new versions.

Each revoke operation requires the use of a fresh new
key and, due to policy changes, fragments of a resource
might be encrypted with different keys. Such a situation
does not cause any complication for key management,
which can be conveniently and efficiently handled with
a key regression technique [13]. Key regression is an RSA-
based cryptographically strong technique (the generated
keys appear as pseudorandom) allowing a data owner to
generate, starting from a seed s0, an unlimited sequence of
symmetric keys k0, . . . , ku, so that simple knowledge of a
key ki (or the compact secret seed si of constant size related
to it) permits to efficiently derive all keys kj with j ≤ i.
Only the data owner (who knows the private key used for
generation) can perform forward derivation, that is, from
ki, derive keys following it in the sequence (i.e., kz with
z ≥ i). By contrast, not knowing the private key, other users
cannot perform forward derivation. To note that the cost
that users must pay for backward key derivation is small:
on a single core, the computer we used for the experiments
is able to process several hundred thousand key derivations
per second.

With key regression, every user authorized to access a
resource just needs to know the seed corresponding to the
most recent key used for it (s0 if the policy has not changed,
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Revoke
1: randomly select a fragment Fi of R /* fragment to be rewritten */
2: download Fc

i from the server /* version of the fragment stored */
3: if c > 0 then /* F0

i has been overwritten in a revocation */
4: derive key kc /* derive kc using key regression */
5: F0

i := D(kc,Fc
i ) /* retrieve the original version of the fragment */

6: determine the last key kl−1 used /* retrieve kl−1 from R’s descriptor */
7: generate new key kl
8: Fl

i := E(kl,F0
i ) /* encrypt F0

i with key kl */
9: upload Fl

i overwriting Fc
i /* overwrite previous version */

10: encrypt sl with the key of acl(R) /* limits it to authorized users */
11: update R’s descriptor /* including the new sl */

Fig. 15. Revoke on resource R

s3 in the example of Figure 14(d)). To this end, there is
no need for key distribution, rather, such a seed can be
stored in the resource descriptor and protected (encrypted)
with a key corresponding to the resource’s acl (i.e., known
or derivable by all authorized users) [14], [15]. Enforcing
revocation entails then, besides re-encrypting a randomly
picked fragment with a fresh new key ki, rewriting its
corresponding seed si, encrypted with a key associated with
the new acl of the resource. Figure 15 illustrates the pseudo-
code for the revocation process.

To access a resource, users need first to download the
resource descriptor, to retrieve the most recent seed sl,
and all the fragments. With the seed, users can compute
the keys necessary to decrypt fragments that have been
overwritten, to retrieve their version encrypted with k0.
Then, they can combine the mini-blocks in fragments to
reconstruct the macro-blocks in the resource. Finally, they
apply mixing in decrypt mode to macro-blocks to retrieve
the plaintext resource. Figure 16 illustrates the pseudo-code
for the process to access a resource. In the pseudocode, the
call to UnMix corresponds to a call to one of our mixing
strategies in decrypt mode.

Note that the size of macro-blocks influences the perfor-
mance of both revoke and access operations. Larger macro-
blocks naturally provide better policy update performance
as they decrease policy update cost linearly, with limited im-
pact on the efficiency of decryption, since its cost increases
logarithmically (Section 6).

5 EFFECTIVENESS OF THE APPROACH

In this section, we elaborate on the effectiveness of our
approach for enforcing revocation, meaning its resilience
against possible attacks by users trying to maintain access
to resources even after revocation. For the discussion, we
recall that msize is the size of individual mini-blocks, m is
the number of mini-blocks in a block, b is the number of
blocks in a macro-block, M is the number of macro-blocks,
and f is the number of fragments, with f=m·b.

We consider the threat coming from a user whose access
to a resource has been revoked, and who can still download
the resource from the server. As a matter of fact, with access
policy enforced by encryption, a revoked user can still be
able to download the resource after revocation, since it is
the encryption itself (and hence the re-writing of fragments
in case of revocation) that prevents the reconstruction of
its plaintext representation. We then evaluate the protection

Access
1: download R’s descriptor and all its fragments
2: retrieve seed sl used for the last encryption
3: compute keys k0, . . . , kl
4: for each downloaded fragment Fx

i do
5: if x > 0 then
6: F0

i := D(kx,Fx
i ) /* retrieve the original version of fragments */

7: for j = 0, . . . ,M − 1 do /* reconstruct and decrypt macro-blocks */
8: Mj := concatenation of mini-blocks F0

i [j], i = 0, . . . , f − 1
9: UnMix(Mj) /* one of: AES-Mix, OAEP-Mix, ROAEP-Mix in decrypt mode */

Fig. 16. Access to resource R

against the user’s attempts to reconstruct the plaintext re-
source. In doing so, we consider the worst case scenario,
with respect to key management, where the user has main-
tained memory of the last key (or the corresponding seed)
used for the resource, up to the point in which the user was
authorized for the access. In other words, we assume the
user to be able to decrypt the fragments that are in their
original state or have been overwritten before the user has
been revoked access. Since keys and seeds are compact, such
a threat is indeed realistic. To reconstruct the resource when
missing a fragment, the user would have to perform a brute
force attack attempting all possible combinations of values
of the missing bits, that is, 2msize attempts for each of the M
macro-blocks. If more fragments, let’s say fmiss, are missing,
the user would have to perform 2msize·fmiss attempts for each
of the M macro-blocks.

The inability of the user to reconstruct a resource if
some fragments have been overwritten is because, without
such fragments, the user cannot retrieve the corresponding
original version (the one encrypted with k0) needed to cor-
rectly reconstruct the resource plaintext. A potential threat
can then come if the user maintains a local storage with
the original version of part of the resource. We distinguish
three cases, depending on whether the user stores: complete
fragments, portions of them across the whole resource, or
an erasure code computed on the fragments.

Local storage of fragments. Suppose a user locally stores
(when authorized) some fragments of the resource. Even
if one of these fragments is later overwritten for revoking
access to the user, and then its most recent version stored at
the server is unintelligible to the user, the user would have
it available for reconstructing the resource. However, the
fragment to be overwritten in a policy revocation is chosen
randomly by the owner. Therefore, the user can still recon-
struct the resource after one fragment has been overwritten
if the fragment that the owner has overwritten is among the
fragments that the user has stored locally, which has proba-
bility (floc/f) to occur, where floc is the number of fragments
stored by the user. After more policy changes have been
enforced, and hence more fragments have been overwritten,
such a probability becomes PA = (floc/f)fmiss , where fmiss is
the number of fragments that have been overwritten since
the user has been revoked access. Probability PA clearly
increases with the number of fragments stored locally, but
quickly reaches extremely low values after a few updates
of the policy, approximating zero even for high percentage
of fragments locally stored. The low probability (and the
high storage effort requested to the user) essentially makes
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such attack not suitable: if the user has to pay a storage
cost that approaches the maintenance of the whole resource,
then the user would have stored the plaintext resource when
authorized in the first place. We note also that a possi-
ble extension of our approach could consider overwriting,
instead of pre-defined fragments, a randomly chosen set
of mini-blocks (ensuring coverage of all macro-blocks), to
enforce a revocation. In this case, the probability of the user
storing mloc mini-blocks per macro-block (also randomly
chosen) to be able to access the resource immediately after
her revocation would be (mloc/(m · b))M , which would
become (mloc/(m · b))M ·mmiss , (i.e., negligible), if the user
misses mmiss mini-blocks per macro-block. We note however
that overwriting randomly picked mini-blocks across the
resource would considerably increase the complexity in the
management of fragments. Hence, given the observations
above about the high storage cost that would be required
to the user and the low probability of her success as policy
changes, we argue that a regular structure for the fragments
is sufficient for protection and is then preferable.

Local storage of portions of all mini-blocks. Instead of
locally storing some selected fragments, a user can opt for
using storage to maintain portions of all the mini-blocks in
each fragment. In this case, whatever the fragment over-
written in the revocation, the user will have to perform
some effort to realize a brute-force attack to retrieve the
bits the user does not have, but such an effort will be
lower. For instance, assuming the user to keep 50% (i.e.,
half of the bits) of each mini-block, the effort for recon-
structing the resource given a missing fragment would now
be 2(msize/2) attempts for each of the M macro-blocks (in
contrast to the 2msize required if all the bits in the fragment
were unknown). However, again, if more fragments are
missing, the required effort would quickly escalate, being
equal to 2(msize/2)·fmiss when fmiss fragments are missing.
For each attempt, the verification that a guess is correct
would require to apply all the unmixing rounds until the
plaintext is reconstructed, with a great cost. We note that
the user can cut down on such cost by locally maintaining,
in addition to the portions of the original mini-blocks, also
a partial representation of the intermediate results of the
computation. This partial representation would allow the
user to test correctness of a guess without performing all
the mixing rounds. In fact, availability of such partial results
can help testing the guesses for a mini-block if the other
mini-blocks in the same block are available (i.e., when the
user misses only one fragment per block). However, from
the birthday paradox, we note that the probability of two
revocations hitting the same block (but a different fragment)
quickly increases with the number of revocations. Then,
after a few policy updates for revocations, the advantage
of the user keeping partial results of the computation will
become ineffective. In addition to this, we note that, also in
this case, the storage and computational efforts required to
the user do not seem to make this attack much preferable
for the user with respect to the choice of locally storing the
whole plaintext resource itself in the first place.

Local storage of erasure codes. Instead of storing fragments,
or portions of them, a user could compute and locally
maintain an erasure code on fragments. Erasure codes [16]

support the construction of additional sequences of bits
that can be used to compensate the loss of some bits in a
message. The simplest erasure code is the parity bit, which
permits to verify the integrity of a bit sequence and to
recover the value of a bit that may have been lost. In general,
an erasure code (e.g., Reed-Solomon codes [17]) of size n
bits permits the recovery (i.e., compensates the loss) of up
to n bits in a message. Major cloud providers extensively
use erasure codes in their storage architectures to improve
reliability, as a more efficient alternative to complete repli-
cation. In our scenario, the user could compute and locally
store an erasure code that permits to mitigate the loss of one
or more fragments, or - more precisely - the intelligibility of
fragments that have been overwritten for policy revocation.
The user can then locally store a code of size equal to
t fragments (with t < f, where f is the total number of
fragments composing the resource) to be able to recover the
plaintext of the resource as long as no more than t different
fragments have been overwritten and not accessible to the
user.
We note that erasure codes represent a more efficient attack
strategy, with respect to the two previously discussed, for
users aiming to maintain access to resources after revoca-
tion. In fact, erasure codes are more compact in size with
respect to fragments or portions of them. It is interesting
here to evaluate the protection against a user using an
erasure code with a comparison between an AONT like
the one proposed by Rivest [5] and our proposal. Rivest’s
scheme relies on the use of a compact key, whose application
produces in the process observable states of size smaller
than the input, hence violating the no-shrinking property.
Consequently, a user without an erasure code could store
the AONT key and thus be able to invert the transformation
even if a fragment has been updated. The missing fragment
prevents reconstructing some portions of the plaintext, how-
ever, the majority of it would still be accessible. To illustrate,
assume the user maintains an erasure code as big as a% of
the resource size and that the owner has overwritten r% of
the resource size. When r ≤ a, the user would succeed in
reconstructing the plaintext resource in both Rivest’s scheme
and our approach. However, when r > a, the Rivest’s
scheme and our approach differ significantly. With Rivest’s
AONT, the user can apply the erasure code and then use
the AONT key to invert the function and re-gain access to a
portion of the resource potentially as big as 100− (r − a)%
of the resource size. By contrast, in our approach, even after
applying the erasure code, there is no key that can be used
to invert the function, and therefore no part of the resource
can be reconstructed. This property is graphically illustrated
in Figure 17, showing the percentage of the resource that
can be recovered by a user who has maintained an erasure
code of size a = 3% of the resource size, as the percentage
of resource that is overwritten by the owner increases. This
analysis suggests as a possible approach for the owner to
counteract erasure code attacks to overwrite more than a
single fragment for policy revocation. Moreover, we note
that to build the erasure code, the user had to have access
to the whole resource. In scenarios where the major cost for
the user is the time and network traffic needed to download
the resource, rather than the local cost of storage, erasure
codes are not a concern, as the user could have easily built
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Fig. 17. Comparison of percentage of resource recovered between
Rivest’s AONT and Mix&Slice when the revoked user has kept an
erasure code whose size is 3% of the resource size

a complete local copy of the resource after its download.
For scenarios where the crucial parameter is the storage cost
at the user-side, revocation should consider the possibility
for users to build local erasure codes and therefore the
overwriting of more than one fragment for enforcing policy
revocation.

A note on collusion. Collusion can happen when two
users join their effort to gain access to a resource that
neither of them can access (we do not consider collusion
with the server, which is assumed trustworthy to enforce
the re-writing requested by the owner). Collusion is then
represented by users who join their effort in maintaining
portions of the resource (e.g., fragments, parts of mini-
blocks, or erasure codes as discussed above). For instance,
each of the users could keep half of the fragments and they
can merge their knowledge to patch for missing fragments.
Such a situation does not add any complication with respect
to the previous discussion, as it simply reduces to consider
the group of colluding users as an individual attacker.
We then note again that the collective effort, in terms of
storage and/or computation, required to gain access would
easily approximate the effort of locally storing the original
plaintext resource itself. In other words, the attack strategy
does not offer an advantages to users attempting to access
the resources for which they are not authorized.

6 IMPLEMENTATION AND EXPERIMENTS

To verify the applicability and the benefits of our proposal,
we implemented and tested a client application (Section 6.1)
for the encryption/decryption of resources to be accessed.
We also implemented the interaction protocol (Section 6.2)
between the client and the server for the storage, retrieval,
and policy update of resources. For the server, we used
Swift as object storage service which is available open
source, and is a good representative of what is offered
by a modern object storage service for the cloud. For the
client, we built a Swift client application that implements
the get method to retrieve a resource from the server, and

the put_fragments method to store/overwrite a fragment
of a resource at the server. The client application also imple-
ments our mix strategies in encrypt and decrypt mode. The
client is written in Python with a C component responsible
for the invocation of mixing in encrypt or decrypt mode.
The experiments have been performed using, for the client,
a machine with Linux Ubuntu 22.04 LTS, Intel Xeon CPU
E5-2620 v4, 8 cores. For the server, we used an Amazon
EC2 m4.xlarge instance, with 4 CPUs and 16 GB of RAM.
The client was connected to the Internet by a symmet-
ric 100 Mbps connection. Our experiments evaluated the
throughput for reconstructing the plaintext of the resources
(i.e., the execution of the mix process in decrypt mode,
Section 6.1) and for accessing resources at the server as well
as managing policy updates (i.e., the access to a resource
and the upload/overwrite of fragments, Section 6.2).

6.1 Mixing throughput

We evaluated the cost, in terms of throughput, of the client
for reconstructing the plaintext representation of a resources
protected with our approach, which entails the execution of
the mixing process in decrypt mode. We considered then
the troughput for mixing a macro-block with the differ-
ent strategies. In particular, we considered the AES-Mix
(bsize=128 bits) with both the software implementation of
AES and its hardware implementation AES-NI, supported
by most of the current Intel x86 CPUs, and the OAEP-
Mix (bsize=512 bits) with BLAKE2 as cryptographic hash
function for the internal OAEP layer. The experiments have
been performed over a macro-block of 256KiB (512KiB for
the OAEP-Mix where the mix function operates on half of
the input).

Figure 18 compares the throughput obtained by the
application of our mixing strategies (i.e., AES-Mix, AES-
NI-Mix, and OAEP-Mix), varying the number of threads
activated by the client application (1, 2, 4, 8, or 16 threads),
and the size msize of mini-blocks (32 bits, 64 bits, or 128 bits).
Note that AES-Mix requires 8 rounds (i.e., 256KiB=32 · 48)
and 15 rounds (i.e., 256KiB=64 ·215) when msize=32 bits and
msize=64 bits, respectively, compared to the 4 rounds (i.e.,
256KiB=32 · 164) and 5 rounds (i.e., 256KiB=64 · 85), respec-
tively, required by OAEP-Mix. Also, OAEP-Mix is the only
mix strategy that supports mini-blocks of size msize=128
bits for which 7 rounds (i.e., 256KiB=128 · 47) are needed.
As visible from Figure 18, OAEP-Mix performs better than
AES-Mix, as cryptographic hash functions are more efficient
than AES encryption. However, AES-NI-Mix, leveraging
hardware implementation, has the best performance. For
instance, the AES-NI multi-threaded implementation with
msize=32 reaches a throughput of 2.5 GB/s. The figure also
shows that, increasing the number of threads, we reach a
performance level that is 8 times the one obtained by the
single-threaded implementation. This is consistent with the
presence of 8 physical cores in the CPU we used, each with
a dedicated AES-NI circuitry.

The results of our experiments also show that, even
if our (AES and OAEP) mixing requires the client to ex-
ecute a more complex decryption compared to the use
of AES with a traditional encryption mode (e.g., CTR or
CBC), the performance is orders of magnitude better than
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Fig. 18. Mixing throughput comparison, varying the size (msize) of mini-blocks and the number of client-side threads

the bandwidth of current network connections, even for
a large number of fragments. As shown in Figure 18, the
encryption and decryption speed of Mix&Slice can reach
up to 2.5 GB/s (or 20 Gbps) when 16 threads are used.
This is 1000 times faster than the bandwidth required to
stream a 4K video (20 Mbps), and 20 times faster than
commonly available home broadband connections (1 Gbps).
For reference, the AWS machine configuration that was used
in the tests supported a network bandwidth of 750 Mbps, so
the network was always the performance bottleneck in our
client-server tests. High-end cloud configurations in AWS
offer network connections as fast as 50 Gbps, however these
configurations also come with up to 192 cores, enabling even
faster encryption speed.

6.2 Access and update throughput

We evaluated the cost, in terms of time, of get requests
and the cost, in terms of throughput, of get requests and
policy updates. In our implementation, the interaction pro-
tocol operates on top of a Swift server instance installed
on the Amazon EC2 platform. For the management of
the fragments composing an object (we will use the term
object instead of resource to be consistent with the Swift
terminology), we considered two options: 1) fragments are
managed as separate objects; 2) fragments are managed as
sub-objects of a single object through the Dynamic Large
Objects (DLO)2 service of Swift, which can split large objects
into a number of sub-objects all downloadable through a
single request. The first option has the advantage of simpli-
fying policy updates, since the re-encryption of a fragment
can be mapped to a single update of the object storing
the corresponding fragment. Also, this option is available
with any object storage service. In this case, however, the
client has the additional overhead of being responsible for
opening a large number of connections with the server (one
for each fragment) to concurrently access all the fragments
of the object and guarantee high performance. With the
second option (the use of DLO), which is specific to Swift,
the client instead generates a single get request for the
object, independently from the number of fragments; the
Swift server is responsible for mapping such a request into
a number of independent requests for downloading all the
fragments composing the object. An approach similar to the

2. https://docs.openstack.org/swift/latest/overview large objects

use of DLO can be realized when the object storage service
offers the flexibility to operate with get and put only on a
portion of the object.

Our experiments consider objects of different size (1MB,
4MB, 16MB, 64MB, 256MB, or 1GB) composed of a variable
number of fragments (i.e., 1, 4, 16, 64, 256, and 1024). The
configurations with 1 fragment per object represents our
baseline, since they correspond to the case where the object
is stored in encrypted form without adopting our approach.

Figure 19 reports the time required for managing a
get request varying the object size and the number of
fragments, when managing each fragment as a single ob-
ject (Figure 19(a)) and when relying on DLO service (Fig-
ure 19(b)). In both scenarios, the graphs clearly show that
for medium/large-size objects (i.e., with size greater than
4MB) the overhead introduced by our approach is limited
compared with the baseline, especially when adopting the
DLO service (Figure 19(b)). For medium/large-size objects,
the parameter with the major impact on performance is
therefore the network bandwidth. As expected, splitting the
resource in a larger number of fragments implies a higher
overhead for the execution of the get request, especially
when the resource is small. The impact of the overhead due
to fragmentation is one order of magnitude higher when
each fragment is managed as a separate object (Figure 19(a)).
This is mainly due to the need of opening a different
connection for the download of each fragment.

To evaluate the throughput of our approach when man-
aging policy updates, we considered a workload character-
ized by one put_fragment request after 50 get requests
on objects in a collection of 1000 objects all of the same
size. Figure 20 reports the throughput obtained varying
the object size and the number of fragments, when man-
aging each fragment as a single object (Figure 20(a)) and
when relying on the DLO service (Figure 20(b)). The fig-
ures show that for medium/large-size objects the benefits
of our approach in the management of policy updates is
significant. In fact, for objects with size greater than 4MB the
throughput of the configurations using fragments is always
higher than the throughput of the baseline. Indeed, the
baseline implies a complete overwriting of the resource at
each put_fragment request, while our approach manages
the same operation overwriting a single fragment having
size 1/f the size of the resource (with a saving of (f − 1)/f
the size of the resource). Our approach provides therefore

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3280590

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14

 0.01

 0.1

 1

 10

 100

 1000

64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB

tim
e 

(s
)

object size

number of fragments
1024

256
64
16
4
1

(a) Swift

 0.01

 0.1

 1

 10

 100

 1000

64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB

tim
e 

(s
)

object size

number of fragments
1024

256
64
16
4
1

(b) Swift DLO

Fig. 19. Time for the execution of get requests

higher scalability compared to the baseline, with a higher
advantage if the access policy changes frequently. Compar-
ing Figure 20(a) and Figure 20(b) we can see a significant
benefit deriving from the use of the DLO service, thanks
to the lower times for the execution of the get requests
(see Figure 19). We note that the number of fragments has
an impact on throughput also in case of policy updates.
Indeed, splitting a resource in a higher number of fragments
implies a higher cost of get operations but a lower cost of
put_fragment operations, since they overwrite a smaller
portion of the revoked resource. Therefore, the number of
fragments that better balances the performance of get and
of put_fragment operations can be different depending,
for example, on the size of the object and on the frequency
of policy updates.

Concluding, our experimental results demonstrate that
the size msize of mini-blocks and the number of fragments
f have an impact on the performance of our solution. While
the size of mini-blocks represents our security parameter
and must be chosen by the data owners based on their
security requirements, the number of fragments (and hence
the size of macro-blocks) can be chosen considering per-
formance only. The identification of the best value for the
number of fragments, however, has to take into consid-
eration different factors with an impact on performance,
including: the size of the objects, the frequency of policy
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Fig. 20. Throughput for a workload combining get and put_fragment
requests

updates, the frequency and average size of get requests,
and the network bandwidth.

7 RELATED WORK

The idea of making the extraction of the information content
of an encrypted resource dependent on the availability of
the complete resource has been first explored by Rivest [5],
who proposed the All-Or-Nothing Transform (AONT). The
AONT requires that the extraction of a resource where n
bits of its transformed form are missing should require
to attempt all the possible 2n combinations. The AONT
can be followed by encryption to produce an all-or-nothing
encryption schema, where the ciphertext is suffixed with the
used random key k XOR-ed with a hash of all the previous
encrypted message blocks. In this way, a modification on the
encrypted message limits the ability to derive the encryption
key. This technique works under the assumption that the
user who wants to decrypt the resource has never accessed
the key before, but fails in a scenario where the user had
previously accessed the key and now the access must be
prevented (i.e., revocation of privileges on encrypted files).
The user, in fact, could have stored key k and hence be
able to partially retrieve the plaintext. Key k can be seen
as a digest: it is compact and its storage allows a receiver
to access the majority of the file, even if one of the blocks
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was destroyed. Different techniques have been proposed for
the definition of AONT (e.g., [18], [19]). These approaches,
however, are based on the assumption that the key has never
been shared with the user.

Most approaches for efficient secure deletion [20], [21]
rely on the fact that the key is a digest for a resource and its
content can be securely deleted by deleting the specific disk
location that stores a piece of information that permits to de-
rive the key used to encrypt the resource. Such approaches
are already used by commercial storage devices [22] and
recent proposals have considered the integration of such
approaches with flexible policies [20]. All these approaches
are not applicable in our scenario, since the server does not
have access to (and hence does not store) the key.

Other approaches for enforcing access control in the
cloud through encryption have been developed along two
research lines: attribute-based encryption (ABE) and selec-
tive encryption approaches. ABE approaches (e.g., [23], [24],
[25], [26], [27], [28]) provide access control enforcement by
ensuring that the key used to protect a resource can be
derived only by the users that satisfy a given condition
on their attributes (e.g., age, role). The main shortcoming
of these solutions is due to their evaluation costs (they
rely on public key encryption), and not always easily and
efficiently support access revocation. Approaches based on
selective encryption (e.g., [15], [29], [30]) assume to encrypt
each resource with a key that only authorized users know or
can derive. In this scenario, policy updates are then either
managed by the data owner, with considerable overhead,
or delegated to the server through over-encryption [15], [29]
or updatable encryption [31]. Over-encryption consists in re-
questing the server to enforce an additional encryption layer
on the encrypted resources so to enforce policy changes.
Updatable encryption schemas instead directly support up-
dates in the key used for encrypting data by sending to the
server a short update token, without revealing encryption
keys. Although over-encryption and updatable encryption
enable enforcement of policy changes without requiring to
download resources, they require the collaboration of the
server for enforcing the changes. On the contrary, Mix&Slice
can be used also if the server is completely unaware of
its adoption. Similarly to Mix&Slice, Knob [32] enforces
revocation through the re-encryption of a small portion of
the resource and does not require trust assumptions on the
server. It however relies on a trusted hardware component.
While providing more efficiency compared to Mix&Slice,
Knob does not provide protection against users who ac-
cessed the resource before being revoked access.

A related line of work addresses the problem of pro-
tecting the confidentiality of encrypted data stored in a
distributed environment in case of key exposure. The ap-
proaches in [33] and [34] leverage Mix&Slice and a new
secret sharing schema, respectively, combined with data
fragmentation to prevent resource reconstruction by making
a single fragment unavailable.

8 CONCLUSIONS

We presented an approach for efficiently enforcing ac-
cess revocation on encrypted resources stored at external
providers. Our solution includes a mixing phase followed

by a slicing phase. The mixing phase transforms the orig-
inal plaintext resource in an encrypted resource where the
whole encrypted representation is needed to go back to the
original plaintext resource. We showed different strategies
for implementing this mixing that differ in the performance
and security guarantee offered. The slicing phase splits the
encrypted resource in fragments that represent the unit of
revocation since the lack of a fragment makes it impossible
for a user to reconstruct the plaintext resource. We showed
that our approach is resilient against attacks by users locally
maintaining copies of previously-used keys. Our implemen-
tation and experimental evaluation confirm the efficiency
and effectiveness of our proposal, which enjoys orders of
magnitude of improvement in throughput with respect to
resource re-writing.
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