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Abstract—The public cloud data integrity auditing technique
is used to check the integrity of cloud data through the Third
Party Auditor (TPA). In order to make it more practical, we
propose a new paradigm called integrity auditing based on the
keyword with sensitive information privacy for encrypted cloud
data. This paradigm is designed for one of the most common
scenario, that is, the user concerns the integrity of a portion of
encrypted cloud files that contain his/her interested keywords.
In our proposed scheme, the TPA who is only provided with the
encrypted keyword, can audit the integrity of all encrypted cloud
files that contain the user’s interested keyword. Meanwhile, the
TPA cannot deduce the sensitive information about which files
contain the keyword and how many files contain this keyword.
These salient features are realized by leveraging a newly proposed
Relation Authentication Label (RAL). The RAL can not only
authenticate the relation that files contain the queried keyword,
but also be used to generate the auditing proof without sensitive
information exposure. We give concrete security analysis showing
that the proposed scheme satisfies correctness, auditing soundness
and sensitive information privacy. We also conduct the detailed
experiments to show the efficiency of our scheme.

Index Terms—Cloud storage; Sensitive information privacy;
Keyword search; Data auditing; Privacy

I. INTRODUCTION

THE cloud storage service enables people to conveniently
outsource their large amounts of data to centralized

cloud servers. Taking Electronic Medical Record (EMR) as
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an example, doctors may upload patients EMRs to cloud
servers, which will be accessed afterward by other doctors
from different departments. The integrity of EMRs is of great
importance, since the tampered EMRs may cause incorrect
diagnosis, or even death to a patient. Cloud data integrity
auditing techniques can check whether the users’ files are
intactly stored in the cloud. The integrity auditing task is
usually performed by the Third Party Auditor (TPA) which
has powerful computational capability that the user does not
have.

Generally speaking, the TPA usually adopts the “pay-as-
you-go” model to charge users according to the workload of
auditing services it provides. The more cloud files are audited,
the more money the user needs to pay. It is estimated by
the Internet Data Center, the data held by each user will
be up to 5200 GB in 2020 [1]. When such large-scale files
are moved to the cloud, auditing the integrity of all cloud
files periodically would bring a heavy economic burden on
the user. Furthermore, it would cause unavoidable waste of
resources. In most cases, the user might only concern the
integrity of specific files that will be utilized shortly. For
example, when a patient comes to the hospital for treatments,
the doctor only concerns the integrity of the EMRs about
this patient. The doctor may search and extract these EMRs
from the cloud according to the identity of this patient. When
medical scientists are going to do a diabetes research, they
might only concern the integrity of EMRs containing the
keyword “diabetes” or “GLU” in the cloud. In these scenarios,
it would be more reasonable and cost-effective to only audit
the integrity of files that contain the keyword of interest.

Since keywords in files often contain the user’s sensitive
information, the user needs to encrypt files before uploading
them to the cloud. When the user wants to check the integrity
of all encrypted cloud files containing the interested keyword,
he/she just provides the TPA with the encrypted keyword
(search trapdoor). This makes achieving integrity auditing
based on the keyword for encrypted cloud data more difficult.
Briefly speaking, it faces two critical challenges. The first
challenge is how to audit the integrity of all encrypted cloud
files containing the queried keyword under the condition that
the TPA is only provided with the search trapdoor. When
the TPA does not know which files contain this queried
keyword, the malicious cloud might provide a valid proof
which is computed from files that do not contain this keyword
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or a portion of files that contain this keyword to pass the
verification. The second challenge is that, from the integrity
auditing procedure, the TPA should not know which files
contain this queried keyword, or the number of files containing
this queried keyword. Because the task of the TPA is only
to perform the integrity auditing, such sensitive information
should not be exposed to the TPA. The sensitive information
may disclose which encrypted keyword is more important,
even exposes the inner relation among files.

In order to address above challenges, we explore how to
achieve integrity auditing based on the keyword with sensitive
information privacy for encrypted cloud data. The contribu-
tions of this paper can be summarized as follows:

(1) We propose a new paradigm called integrity auditing
based on the keyword with sensitive information privacy for
encrypted cloud data. Different from previous schemes, the
TPA could check the integrity of all encrypted cloud files
containing one specific keyword only with the search trapdoor
in such a scheme. The proof from the cloud can pass the
verification from the TPA, if and only if the cloud correctly
stores all of the encrypted files that contain this keyword. In
addition, the TPA cannot obtain any sensitive information,
for example, which files contain the queried keyword and
how many files contain the queried keyword. Existing works
cannot achieve such security. Therefore, this new paradigm is
different from the traditional cloud data integrity auditing. In
integrity auditing procedure, our proposal is only with O(1)
computation complexity and communication complexity in
terms of the total number N of files containing the queried
keyword, which is superior to O(N) complexity of the data
auditing based on the verifiable searchable encryption.

(2) We propose the first integrity auditing scheme based on
the keyword with sensitive information privacy for encrypted
cloud data. To construct this scheme, we design a novel form
of label named Relation Authentication Label (RAL). This
label plays an important role in realizing our design goals.
On one hand, the RAL can authenticate the relation that
files contain the keyword. On the other hand, it can be used
to generate the auditing proof, which does not expose the
identity of any file containing this keyword. As a result, the
TPA can perform the integrity auditing task only with the
search trapdoor. Also, the auditing proof does not expose any
sensitive information to the TPA. The cloud cannot deduce
the relation between the file and the queried keyword. The
plaintext of the file and the queried keyword are also kept
secret from the cloud.

(3) We give concrete security analysis showing that the
proposed scheme satisfies correctness, auditing soundness and
sensitive information privacy. We conduct comprehensive ex-
periments to demonstrate the practicality and the efficiency
of our scheme. Experimental results show that it is efficient
for the user to generate/update the authenticator and the RAL.
Experiment results also show that the challenge/proof genera-
tion and the proof verification do not incur heavy computation
overhead in the auditing phase.

Organization: In Section II, we show the system model
and design goals. In Section III, we explain the notations,
preliminaries, definition and security model. In Section IV, we

give the concrete scheme. In Section V and Section VI, we
give the security analysis and experiment results. In Section
VII, we introduce the related work. The conclusion is given
in the last section.

II. SYSTEM MODEL, THREAT MODEL AND DESIGN GOALS

A. System Model

As shown in Fig. 1, the system model in the proposed
scheme consists of three entities: the user, the cloud and the
TPA.

The user: It is the person who wishes to store a great
number of encrypted files on the cloud. He generates the
secure index and authenticators, and uploads them along with
the encrypted file blocks to the cloud. In order to enable the
TPA to perform the auditing task on the files that contain the
queried keyword, he sends the search trapdoor to the TPA.

The cloud: It is an entity who has massive storage ca-
pacity and computational power. When receiving the auditing
challenge for the specific keyword, it first searches through
the secure index to find the corresponding encrypted files.
Then it computes the auditing proof according to the auditing
challenge and sends it back to the TPA.

TPA: It is an entity who performs the auditing task on
behalf of the user. It interacts with the cloud in the auditing
phase, and checks the integrity of all files that contain the
queried keyword.

Fig. 1: System model

B. Threat Model

The cloud and the TPA can both pose potential threats.
The cloud: The data stored in the cloud may be altered

or removed without the consent from the user. Making things
worse, the cloud will hide the data corruption incidence. The
cloud tries to fool the TPA into accepting its auditing proof
when it does not possess the whole data. In addition, the cloud
is curious about the plaintext of the file/queried keyword and
the relation between the file and the queried keyword.

The TPA: The TPA is honest in checking the integrity
of user files. Besides that, it does not actively perform the
leakage-abuse attack. Therefore, we do not consider forward
and backward privacy at the TPA in this paper. However, it
is curious about the sensitive information of the file. It tries



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3106780, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2020 3

to deduce the plaintext of the keyword and the file. It is also
curious about the identities and the amount of files that contain
the queried keyword.

C. Design Goals

1) Correctness: If the cloud correctly stores all of the files
that contain the queried keyword, the auditing proof can
pass the verification.

2) Auditing Soundness: The malicious cloud cannot forge a
valid auditing proof(the aggregated authenticator and the
aggregated data block) to pass the verification.

3) Sensitive information privacy: (1) For the cloud: Except
the search pattern and the access pattern, the cloud
cannot deduce the relation between the file and the
queried keyword. The plaintext of the file and the queried
keyword are also kept secret from the cloud. (2) For the
TPA: The above-mentioned sensitive information which
is hidden from the cloud is also unavailable to the TPA. In
addition, from the auditing proof, the TPA cannot deduce
which files contain the queried keyword and how many
files contain the queried keyword. Note that we do not
consider forward and backward privacy at TPA.

III. NOTATIONS, PRELIMINARIES, DEFINITION AND
SECURITY MODEL

A. Notations

Some frequently used notations are shown in Table I.

B. Preliminaries

1) Bilinear map:
A map is called as bilinear map e : G1 × G1 → G2 if it

satisfies the following three properties:
(i) Computability: It is efficient to compute this map.

(ii) Non-degeneracy : e(g, g) 6= 1 for a generator g ∈ G1.
(iii) Bilinearity: Given a, b ∈ Z∗q and u, v ∈ G1, e(ua, vb) =

e(u, v)ab.
2) Discrete-Logarithm (DL) Assumption:
Given g, ga ∈ G1, where a ∈ Z∗q , computing g is

computationally infeasible.

3) Computational Diffie-Hellman (CDH) Assumption:
Given g, ga, u ∈ G1, where a ∈ Z∗q , computing ua is

computationally infeasible.

4) Secure index:
As shown in Fig. 2, the secure index[2] is derived from

the inverted index structure[3]. The inverted index enables the
cloud to efficiently search files based on the queried keyword.
The inverted index includes two parts: the keyword wk(1 ≤
k ≤ m) and the index vector vwk(1 ≤ k ≤ m). The index
vector, which is represented by an n−bit binary string, records
the relation between the file and the keyword. If the file Fi
contains the keyword, the i− th bit of the index vector is set
to 1(vwk [i]← 1); otherwise, the i− th bit of the index vector
is set to 0(vwk [i]← 0).

Fig. 2: Secure index

The secure index[2] enables the cloud to efficiently search
encrypted files based on the encrypted keyword. The secure
index includes two parts: the address π(wk)(1 ≤ k ≤ m)
and the encrypted index vector evπ(wk)(1 ≤ k ≤ m). The
address is a permutation of the keyword. The encrypted index
vector is also an n − bit binary string, but hides the relation
between the file and the keyword. Given the search trapdoor
π(wk), the cloud searches the address in the secure index, and
decrypts the corresponding encrypted index vector. Finally, the
cloud can find the files containing this queried keyword. The
secure index guarantees that : 1) without knowing the search
trapdoor, the cloud cannot deduce any relation between the file
and the keyword. 2) Given one search trapdoor, the cloud can
only know which files contain this queried keyword. The cloud
cannot deduce any other relation between other keywords and
files.

C. Definition

Definition 1: An integrity auditing scheme
based on the keyword with sensitive information
privacy for encrypted cloud data includes eight
algorithms: (SysIni(λ), Setup(F ), IndexGen(x,W, V ),
AuthGen(x,C), TrapdoorGen(w′), ChallGen(Tw′),
ProofGen(Chal, I, C,Φ), ProofV erify(Chal, Proof)).

1) SysIni(λ) → (pp, x, y): This algorithm takes the se-
curity parameter λ as input. This algorithm outputs the
system parameters, the secret key x and the public key y
of the user..

2) Setup(F )→ (C,W, V ): The user executes this algorith-
m. It takes the file set F as input. This algorithm outputs
the encrypted data block set C, the keyword set W , the
index vector set V ,

3) IndexGen(x,W, V ) → I: The user executes this algo-
rithm. It takes the secret key x, the keyword set W and
the index vector set V as input. This algorithm outputs
the secure index I .

4) AuthGen(x,C)→ Φ: The user executes this algorithm.
It takes the secret key x and the encrypted data block set
C as input. This algorithm outputs the authenticator set
Φ.

5) TrapdoorGen(w′) → Tw′ : The user executes this algo-
rithm. It takes the keyword w′ as input. This algorithm
outputs the search trapdoor Tw′ .
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TABLE I: Notations

Notation Meaning
π(·) A pseudo random permutation
f(·) A pseudo random function
G1, G2 Two q − order multiplicative cyclic groups
e A bilinear map e : G1 ×G1 → G2

g, u Two generators in G1

n The total number of files
s The total number of blocks in each file
m The total number of keywords
Fi The i− th file
F The file set, that is F = {F1,F2, ..., Fi, ..., Fn}
Ci The encrypted i− th file
cij The j − th block of Ci, that is Ci = {ci1, ci2, ..., cij , ..., cis}
C The encrypted data block set, that is C = {C1, C2, ..., Ci, ..., Cn}
σij The authenticator of encrypted data block cij
Φ The authenticator set, that is Φ = {σ11, ..., σ1s, ..., σij , ..., σns}
wk The k − th keyword
W The keyword set, that is W = {w1, w2, ..., wk, ..., wm}

Ωπ(wk) The RAL of keyword wk
Ωwk,j The j − th part of the RAL Ωπ(wk) , that is Ωπ(wk) = {Ωwk,1,Ωwk,2, ...Ωwk,j , ...,Ωwk,s}
vwk The index vector for keyword wk
V The index vector set, that is V = {vw1 , vw2 , ..., vwk , ..., vwm}

evπ(wk)[i] The i− th bit in the encrypted index vector for keyword wk
I The secure index
Tw′ The search trapdoor of keyword w′

6) ChallGen(Tw′) → Chal: The TPA executes this algo-
rithm. It takes the search trapdoor Tw′ as input. This
algorithm outputs the auditing challenge Chal.

7) ProofGen(Chal, I, C,Φ) → Proof : The cloud exe-
cutes this algorithm. It takes the auditing challenge Chal,
the secure index I , the encrypted data block set C and
the authenticator set Φ as input. This algorithm outputs
the auditing proof Proof .

8) ProofV erify(Chal, Proof) → {0, 1}: The TPA exe-
cutes this algorithm. It takes the auditing challenge Chal
and the auditing proof Proof as input. This algorithm
outputs the auditing result.

D. Security Model

The security model involves auditing soundness and sen-
sitive information privacy. Firstly, we introduce the following
game between a challenger C and an adversary A to define the
auditing soundness. This game includes the following phases:

1) Setup Phase: The challenger C executes the SysIni
algorithm, and sends the system parameters pp and the
public key y of the user to the adversary A.

2) Query Phase: The adversary A makes the following
queries:
a) Authenticator Query: The adversary A adaptively se-
lects a series of blocks {cij}(1 ≤ i ≤ n, 1 ≤ j ≤ s)
and sends them to the challenger C. The challenger
C computes the corresponding authenticators and sends
them back to the adversary A.
b) RAL Query: The adversary A adaptively selects a
series of encrypted keywords wk(1 ≤ k ≤ m) and sends
them to the challenger C. The challenger C computes

the corresponding RALs and sends them back to the
adversary A.

3) Challenge Phase: The challenger C sends the auditing
challenge Chal = {Tw, {j, vj}j∈Q} to the adversary A,
where Tw is the search trapdoor of the queried keyword
w, j is the challenged index and vj is the challenged
coefficient. The adversary is required to return an auditing
proof for the challenge Chal.

4) Forgery Phase: According to the auditing challenge
Chal, the adversary A finds files that contain the queried
keyword and computes the auditing proof. This auditing
proof is composed by the aggregated data block and the
aggregated authenticator. If this auditing proof can pass
the verification, the adversary A wins in this game.

The above-mentioned security model shows that an adver-
sary who does not keep all challenged blocks correctly, tries to
cheat the challenger to accept the auditing proof. Definition 2
shows that there exists a knowledge extractor that can extract
the corresponding blocks if the adversary outputs a valid
auditing proof. Definition 3 shows that, for the unchallenged
blocks, if the auditing proof could pass the verification, the
cloud stores them with high probability.

Definition 2(Auditing Soundness): We say that an integrity
auditing scheme based on the keyword with sensitive infor-
mation privacy for encrypted cloud data achieves auditing
soundness if the following condition holds: if the adversary
A wins in the above-mentioned game with non-negligible
probability, there is a knowledge extractor which could ex-
tract the corresponding blocks except possibly with negligible
probability.

Definition 3(Detectability): We say that an integrity auditing
scheme based on the keyword with sensitive information
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privacy for encrypted cloud data is (ρ, δ) detectable (0 ≤ ρ ≤
1, 0 ≤ δ ≤ 1) if, given a fraction ρ of tampered blocks, the
probability of detection for the tampered blocks is at least δ.

Next, we introduce leakage functions and experiments to
define sensitive information privacy. We firstly define two
leakage functions L1 and L2 [4]. These leakage functions
capture what is exposed by the ciphertext and the search
trapdoors. L1(F, V ) takes the file set F and the index vector
set V as input. It reveals the total number of files |F |, each
file block size |Fij |, the total number of keywords |W |, each
keyword size |w| and the index i of each file. Because the
RAL size is constant, this function also reveals the RAL size
|Ωπ(wk)|. L2(F, V,w′) takes the file set F , the index vector
set V and the keyword w′ as input. It reveals the size of the
keyword |w′|, the search pattern and the access pattern. Then
we define the following experiments in which A is a stateful
adversary and S is a stateful simulator.
RealA(λ): The challenger gets the secret key of the PRP

and PRF. A sends the file set F and the index vector set V to
the challenger and gets the secure index I and the encrypted
data block set C. A makes polynomial times queries and
receives the corresponding search trapdoor Tw′ . Finally, A
outputs one bit b.
IdealA,S(λ): A chooses the file set F and the index vector

set V . Given L1(F, V ), S sends the secure index I ′ and the
encrypted data block set C ′ to A. A makes polynomial times
queries. Given L2(F, V,w′), S sends the search trapdoor T ′w′
to A. Finally, A outputs one bit b.

The above-mentioned experiments formalize a simulator
and an adversary who tries to obtain sensitive information
from leakage functions. Definition 4 shows that except the
search pattern and the access pattern, the cloud cannot deduce
any useful sensitive information such as the relation between
the file and the queried keyword, the plaintext of files and the
queried keyword. All above-mentioned sensitive information
which is kept secret from the cloud should also be unavailable
to the TPA. In addition, from the auditing proof, the TPA
cannot deduce any sensitive information such as which files
contain the queried keyword and how many files contain the
queried keyword.

Definition 4(Sensitive Information Privacy): We say that an
integrity auditing scheme based on the keyword with sensitive
information privacy for encrypted cloud data achieves sensitive
information privacy if the following conditions hold:

1) There exists a probabilistic polynomial-time (PPT) sim-
ulator S for any PPT adversary A such that:
|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]| ≤ negl(λ).
2) The sensitive information which is kept secret from the

cloud is also unavailable to the TPA. In addition, the TPA
cannot know which files and how many files contain the
queried keyword.

IV. OUR PROPOSED SCHEME

In this section, we firstly give two straightforward approach-
es to achieve integrity auditing based on the keyword for
encrypted cloud data. The first is the naive approach that
requires the cloud to return all files containing the queried

keyword to the TPA in the auditing phase. It will incur a
heavy communication burden. Besides, this approach cannot
realize sensitive information privacy. The second is a slightly
better approach, which has better communication efficiency,
but still may disclose sensitive information to the TPA. Then
we give our core scheme to achieve integrity auditing based on
the keyword with sensitive information privacy over encrypted
cloud data.

A. A naive approach

This approach is designed partially based on the Verifiable
Searchable Encryption (VSE) technique[5]. We name it as the
data auditing based on the VSE. The user and the TPA share
one secret key for one MAC algorithm. The cloud stores the
encrypted files and the secure index along with a MAC set.
In order to generate the MAC value in this MAC set, the
user runs the MAC algorithm with inputting each encrypted
keyword and all encrypted files that contain this keyword.
When the TPA wants to check the integrity of files containing
the specific keyword, it sends the encrypted keyword as the
auditing challenge to the cloud. According to the secure index,
the cloud finds all of the encrypted files that contain this
keyword. Then he returns them along with the corresponding
MAC value to the TPA. Because the TPA holds the secret
key for the MAC algorithm, it can verify whether this MAC
value is valid based on these received encrypted files. If it
is valid, it means all files containing this keyword are intact.
However, in this approach, the cloud needs to return all MACs
and files containing the queried keyword to the TPA. Assume
there is N files that contain the queried keyword in total. It
will incur O(N) communication overhead in integrity auditing
procedure. In addition, the TPA has to check the validity of
these MACs based on the O(N) received files independently.
It will incur O(N) computation overhead in integrity auditing
procedure. Obviously, the data auditing based on the VSE is
not efficient, especially when the number or the size of files
containing this keyword is large. Besides, it inevitable exposes
the sensitive information, like which files contain this queried
keyword, to the TPA. Therefore, this approach is unpractical.

B. A slightly better approach

Similarly to the first approach, the user and the TPA also
share one secret key for one MAC algorithm in this approach.
In addition, the cloud stores the encrypted files and the secure
index along with a MAC set. Different from the first approach,
the user sets the encrypted keyword and the corresponding file
identities as the input of the MAC algorithm. When the cloud
receives the encrypted keyword, it first finds the corresponding
files according to the secure index. Then the cloud just returns
the corresponding MAC value and file identities back to the
TPA. The TPA verifies whether the MAC value is valid based
on the encrypted keyword and the returned file identities. If it
is valid, the TPA will know which files contain the queried
keyword. By executing the regular PDP scheme[6, 7], the
TPA can verify whether the cloud intactly stores all of files
containing the queried keyword. Obviously, this approach does
not need the cloud to send all related files to the TPA. So it
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is much more efficient than the first approach. However, the
TPA also knows which files contain this queried keyword. This
sensitive information will be fully exposed to the TPA. So this
approach is still practically unacceptable.

High Level Explanation: The reason why the above-
mentioned approaches expose sensitive information is that,
in regular PDP schemes[6, 7], for each data block cj , the
user uses his secret key x to compute an authenticator
σj = (H(ID||j) · gcj )x. For each file, the user uploads data
blocks along with authenticators to the cloud. In the auditing
phase, the cloud computes the aggregated authenticator and
the aggregated data block as the auditing proof. Actually, the
hash of the file identity is one key factor of the aggregated
authenticator in the auditing proof. The TPA verifies the
auditing proof with the file identity and the public key of
the user. Thus, if we utilize the PDP technique directly
in our setting, the TPA must know the corresponding file
identities to perform the auditing task. In other words, the
TPA needs to know which files contain the queried keyword.
To achieve sensitive information privacy, all identities of the
files containing the queried keyword need to be hidden in
the auditing proof. Meanwhile, the integrity of all files that
contain the queried keyword should be able to be verified.
In order to realize this goal, we design a novel label called
Relation Authentication Label (RAL), and implant it into the
secure index as shown in Fig. 3. We consider to multiple the
regular aggregated authenticator[6] with the RAL to generate
the final aggregated authenticator in our scheme. In order to
hide the identities of files that contain the queried keyword,
we set the aggregated hash inversion of these identities as one
multiplication factor of the RAL. When the regular aggregated
authenticator is multiplied by the RAL, all file identities
could be eliminated from the auditing proof. The sensitive
information privacy can be achieved by this way. However, if
the RAL is only composed by this factor, the proposed scheme
will not be secure against the replace attack[8, 9]. So we set
the trapdoor and the corresponding block number as other two
multiplication factors of the RAL. These two factors along
with the aggregated hash inversion of file identities constitute
the core factors in the final RAL. When this designed RAL
multiples the regular aggregated authenticator, file identities
could be eliminated from the auditing proof. Meanwhile, the
TPA is able to verify the integrity of all files containing the
queried keyword based on the trapdoor. More details will be
given in the later section. Generally speaking, the designed
RAL is the core component of the proposed scheme. The
RAL can not only be used to authenticate the relation that files
contain the queried keyword, but also is used to eliminate the
sensitive information such as which files and how many files
contain the queried keyword.

C. Our Core Scheme

Scheme Details: Fig. 4 shows the process of the proposed
scheme. 1) The user firstly executes Setup, IndexGen and
AuthGen algorithms to generate the encrypted data block
set, the authenticator set, the secure index. He sends them
to the cloud. 2) The user executes TrapdoorGen algorithm

Fig. 3: Our secure index with RAL

to generate the search trapdoor, and sends it to the TPA.
This search trapdoor contains the encrypted keyword, which
will be used as one part of the auditing challenge. 3) The
TPA executes ChalGen algorithm to generate the auditing
challenge, and sends it to the cloud. This auditing challenge
includes the search trapdoor which enables the cloud to
find the files. This auditing challenge also designates which
blocks the TPA challenges. 4) The cloud executes ProofGen
to search through the database and finds the corresponding
data blocks and authenticators. Then the cloud computes the
auditing proof and sends it back to the TPA. Finally, the TPA
verifies whether the auditing proof is valid.

Fig. 4: the process of the proposed scheme

Now let us describe the scheme details.
1) SysIni(λ)→ (pp, x, y)

a) Choose the system parameters pp as follows: two
q−order multiplicative cyclic groups G1, G2, a bilin-
ear map e : G1×G1 → G2, two generators u, g ∈ G1,
three secure hash functions H1 : {0, 1}∗ → G1, H2 :
{0, 1}∗ → G1, H3 : {0, 1}∗ → G1, a symmetric
encryption algorithm Enc(·, k0) with key k0, a pseudo
random permutation(PRP) πk1(·) with key k1, and a
pseudo random function(PRF) fk2(·) with key k2. For
simplification, we will use π(·) to denote πk1

(·) and
f(·) to denote fk2

(·) in the detailed scheme.
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Algorithm 1 Setup

Input: The file set F .
Output: The encrypted data block set C, the keyword set W ,

the index vector set V , the secret key x and the public key
y.

1: for each Fi ∈ F (1 ≤ i ≤ n) do
2: Split it into s blocks Fi1, Fi2, ..., Fis;
3: for each 1 ≤ j ≤ s do
4: Compute cij = Enc(Fij , k0);
5: end for
6: end for
7: Set C = {cij}(1 ≤ i ≤ n, 1 ≤ j ≤ s);
8: Extract all keywords, and build W ;
9: for each wk ∈W (1 ≤ k ≤ m) do;

10: Create an n− bit binary string vwk ;
11: Initiate all elements in vwk to 0;
12: for each Fi ∈ F (1 ≤ i ≤ n) do
13: if Fi contains wk then
14: Set vwk [i] = 1;
15: end if
16: end for
17: end for
18: Set V = {vw1

, vw2
, ..., vwm};

19: Randomly choose x ∈ Z∗q , and compute y = gx;
20: return (C,W, V, x, y);

b) Randomly choose the secret key for the user x ∈ Z∗q ,
and the corresponding public key y = gx.

2) Setup(F )→ (C,W, V )

a) For each file, the user splits it into s blocks, and
encrypts them by the symmetric encryption algorithm
(e.g. AES or 3DES).

b) The user extracts all keywords, then builds the keyword
set W .

c) For each keyword wk, the user creates an n − bit
binary string as the index vector vwk . He initiates every
element in this index vector to 0. For each file Fi, if
it contains keyword wk, the user sets the i− th bit of
the index vector to 1: vwk [i] = 1.

d) All of these index vectors vwk compose the index
vector set V = {vw1

, vw2
, ..., vwm}.

3) IndexGen(x,W, V )→ I

a) For each keyword wk, the user computes π(wk) as the
address of each row in the secure index.

b) For each keyword wk, the user encrypts the index
vector evπ(wk) = vwk ⊕ f(π(wk)).

c) For each keyword wk, the user creates an empty set
Swk = ∅. For each i ∈ [1, n], if vwk [i] = 1, the user
adds this file index i to the set Swk .

d) For each keyword wk, the user computes the RAL
Ωπ(wk) = {Ωwk,1,Ωwk,2, ...,Ωwk,s}, where Ωwk,j =

[(
∏

i∈Swk
H1(IDi||j)−1

) ·H3(j) ·H2(π(wk)||j)]x.

e) The user sets I = {π(wk), evπ(wk),Ωπ(wk)}k=1,2,...,m.

4) AuthGen(x,C)→ Φ

Algorithm 2 IndexGen

Input: The secret key x, the keyword set W , the index vector
set V .

Output: The secure index I .
1: for each wk ∈W (1 ≤ k ≤ m) do
2: Extract vwk from V ;
3: Compute π(wk);
4: Compute evπ(wk) = vwk ⊕ f(π(wk));
5: Create an empty set Swk = ∅;
6: for each i ∈ [1, n] do
7: if vwk [i] == 1 then
8: Add i to set Swk ;
9: end if

10: end for
11: for each j ∈ [1, s] do
12: Compute:

Ωwk,j

= [(
∏

i∈Swk
H1(IDi||j)−1

) ·H3(j) ·H2(π(wk)||j)]x

13: end for
14: Set Ωπ(wk) = {Ωwk,1,Ωwk,2, ...,Ωwk,s};
15: end for
16: return I = {π(wk), evπ(wk),Ωπ(wk)}k=1,2,...,m;

a) For each encrypted data block cij , the user computes
the authenticator σij = [H1(IDi||j) · ucij ]x.

b) The user sets Φ = {σij}(1 ≤ i ≤ n, 1 ≤ j ≤ s).
5) TrapdoorGen(w′)→ Tw′

The user computes the search trapdoor as Tw′ =
{π(w′), f(π(w′))}.

6) ChalGen(Tw′)→ Chal

a) The TPA randomly chooses a c-elements subset Q ⊆
[1, s].

b) For each j ∈ Q, the TPA randomly chooses vj ∈ Z∗q .
c) The TPA sets the auditing challenge as Chal =
{Tw′ , {j, vj}j∈Q}.

7) ProofGen(Chal, I, C,Φ)→ Proof

a) The cloud parses the challenge Chal =
{Tw′ , {j, vj}j∈Q}, where Tw′ = {π(w′), f(π(w′))}.

b) According to the address π(wk) = π(w′), the cloud
finds the corresponding encrypted row evπ(wk) and
the RAL Ωπ(wk) in the secure index. Then the cloud
decrypts the corresponding encrypted index vector
vwk = evπ(wk) ⊕ f(π(wk)).

c) The cloud initiates an empty set Swk = ∅. For each
i ∈ [1, n], if vwk [i] = 1 , the cloud adds i to Swk .

d) The cloud computes T =
∏

i∈Swk

∏
j∈Q

σij
vj ·

∏
j∈Q

Ωwk,j
vj ,

µ =
∑

i∈Swk

∑
j∈Q

cij · vj . The cloud sets the auditing

proof Proof = {T, µ}.
8) ProofV erify(Chal, Proof)→ {0, 1}

The TPA checks the validity of the following equation:

e(T, g)
?
= e((

∏
j∈Q

(H3(j) ·H2(π(w′)||j))vj ) · uµ, y) (1)
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Algorithm 3 ProofGen

Input: The auditing challenge Chal, the secure index I , the
encrypted data block set C, the authenticator set Φ.

Output: The auditing proof Proof .
1: Extract the auditing challenge Chal = {Tw′ , {j, vj}j∈Q},

where Tw′ = {π(w′), f(π(w′))};
2: Search the corresponding row in the secure index, where
π(wk) = π(w′);

3: Compute vwk = evπ(wk) ⊕ f(π(wk));
4: Initiate an empty set: Swk = ∅;
5: for each i ∈ [1, n] do
6: if vwk [i] == 1 then
7: Add i to Swk ;
8: end if
9: end for

10: Compute T =
∏

i∈Swk

∏
j∈Q

σij
vj ·

∏
j∈Q

Ωwk,j
vj and µ =∑

i∈Swk

∑
j∈Q

cij · vj ;

11: return Proof = {T, µ};

If this equation holds, the TPA outputs 1, which means
that the files containing the queried keyword are correctly
stored in the cloud; otherwise, he outputs 0 , which means
that some files have been tampered.

We show an example of the RAL construction in Fig. 5.
Suppose there are three files F1, F2, F3 containing the keyword
w. Each file is encrypted and divided into two blocks. We
use ci1, ci2(i = 1, 2, 3) to represent the first and the second
encrypted data blocks of file Fi. Each encrypted data block
cij(i = 1, 2, 3; j = 1, 2) is related to an authenticator σij . We
use Ωπ(w) = {Ωw,1,Ωw,2} to represent the RAL of keyword
w, where Ωw,1 and Ωw,2 correspond to the first block and the
second block, respectively.

Fig. 5: An example of the RAL construction

Note that, if the RAL is multiplied by all of authenticators
of files that contain the keyword w, the file identity embed-
ded in the authenticator could be eliminated. In this case,
Ωw,1 · σ11 · σ21 · σ31 = [H2(π(w)||1) ·H3(1) · uc11+c21+c31 ]x

(for the first block) and Ωw,2 · σ12 · σ22 · σ32 =
[H2(π(w)||2) ·H3(2) · uc12+c22+c32 ]x (for the second block).

D. Discussion

The proposed scheme can be extended to support efficient
dynamic operation. When the user modifies his file, he needs to
update the secure index. The secure index includes the encrypt-
ed index vector and the RAL. It is easy to update the encrypted
index vector, which is similar to other dynamic searchable en-
cryption(SE) schemes[10–12]. The RAL generation takes most
of the computation overhead of the secure index generation.
However, the user does not need to re-execute the entire RAL
generation when he adds/deletes/updates his files. Instead, the
user only needs to update the first part (

∏
i∈Swk

H1(IDi||j)−1
)x

of the corresponding RAL. Here, we give an example. Suppose
three files F1, F2, F3 with identities ID1, ID2, ID3 contain
the keyword w. The RAL of the keyword is designed as
Ωw,j = [(

∏
i∈{1,2,3}

H1(IDi||j)−1
) ·H3(j) ·H2(π(w)||j)]x. If

the user adds a file F4 which also contains the keyword w, the
new RAL Ω′w,j can be easily computed based on the old RAL
: Ω′w,j = Ωw,j ·H1(ID4||j)−x. The deletion/update operation
is similar to the addition operation. The computation over-
head is relatively low compared with re-executing the entire
RAL generation. In Section VI, we compare the computation
overhead of the RAL update with re-executing the entire RAL
generation.

When the user updates files, he also needs to compute
the authenticators of the corresponding blocks and the au-
thenticated tag. This computation is compatible with many
Dynamic Provable Data Possession (DPDP) schemes, such as
DPDP based on Merkle tree[13, 14], DPDP based on Oblivi-
ous RAM[15], DPDP based on authenticated dictionaries[16],
DPDP based on linked table and location array[17]. Since
the data dynamic is not the focus of this paper, we omit the
detailed description and refer readers to the above-mentioned
references for more details.

As we have analyzed previously, the computation complex-
ity and the communication complexity of the data auditing
based on the VSE are both O(N) in integrity auditing pro-
cedure, where N is the total number of files containing the
queried keyword. In the proposed scheme, the proof sent from
the cloud to the TPA is Proof = {T, µ}. It only incurs
O(1) communication overhead in terms of N . Therefore, the
communication complexity of the proposed scheme is lower
compared with that of the data auditing based on the VSE
in integrity auditing procedure. In addition, the computation
complexity for TPA to check the integrity is also only O(1). In
conclusion, the proposed scheme outperforms the data auditing
based on the VSE in both communication complexity and
computation complexity.

V. CORRECTNESS AND SECURE ANALYSIS

Theorem 1 (Correctness). If the cloud correctly stores all of
the files that contain the queried keyword, the auditing proof
can pass the verification.

Proof. It is because:
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e(T, g)
= e(

∏
i∈Swk

∏
j∈Q

σij
vj ·

∏
j∈Q

Ωwk,j
vj , g)

= e(
∏

i∈Swk

∏
j∈Q

[H1(IDi||j) · ucij ]
x·vj ·∏

j∈Q
[(

∏
i∈Swk

H1(IDi||j)−1
) ·H3(j) ·H2(π(w′)||j)]

x·vj
, g)

= e((
∏

i∈Swk

∏
j∈Q

H1(IDi||j)vj ) · (u
∑

i∈Swk

∑
j∈Q

cij ·vj
)·∏

j∈Q

∏
i∈Swk

H1(IDi||j)−vj ·
∏
j∈Q

H3(j)
vj ·∏

j∈Q
H2(π(w′)||j)vj , gx)

= e((
∏
j∈Q

(H3(j) ·H2(π(w′)||j))vj ) · uµ, y)

Theorem 2 (Detectability). Assume that the cloud stores total
n data blocks for one file with m tampered blocks. The TPA
randomly selects c blocks to check. The cloud can detect the
cloud’s malicious behavior with the probability of at least 1−
(n−mn )c.

Proof. Let X be the random variable denoting the number of
tampered blocks that are sampled. The probability PDetect is
computed as follows:

PDetect = P{X ≥ 1} = 1− P{X = 0}
= 1− n−m

n · n−m−1
n−1 · ... · n−m−c+1

n−c+1

≥ 1− (n−mn )c

Remark: When only 1% files has been tampered, the probabil-
ity is higher than 95% by setting c = 300; or higher than 99%
by setting c = 460. The relation between the detectability and
the number of sampling blocks can be found in Ref. [18].

Theorem 3 (Auditing soundness). If the CDH problem in G1

is hard, the proposed scheme achieves auditing soundness.

Proof. Now, we utilize a series of games to prove that the
adversary cannot forge the aggregated data block and authen-
ticator.

Game0: This game is similar to the game in the subsection
III.D.

Game1: Game1 is as same as Game0, except that the
challenger keeps the record of the auditing proof P = {T, µ}.
If the adversary submits a forged proof and passes the verifi-
cation, but the aggregated authenticator T ∗ is not in the record
list, this game aborts.

Analysis. Assume (T, µ) is the valid proof. From the
equation(1), we know
e(T, g) = e((

∏
j∈Q

(H3(j) ·H2(π(w′)||j))vj ) · uµ, y).

Assume the adversary outputs a forged proof (T ∗, µ∗) and
this proof passes the verification. From the equation (1), we
know

e(T ∗, g) = e((
∏
j∈Q

(H3(j) ·H2(π(w′)||j))vj ) · uµ
∗
, y) (2)

Because Game1 aborts, we have µ 6= µ∗ (Otherwise T =
T ∗). We define ∆µ = µ∗ − µ. Next, we will show, if Game1
aborts, the simulator can solve the CDH problem.

Given g, g∂ , w ∈ G1, the simulator tries to output w∂ . The
simulator behaves like in Game0, except for the following:

The simulator randomly selects α, β ∈ Z∗q and sets u =
gαwβ . The simulator is given g∂ , and does not know the secret
key ∂.

For each hash query H1(IDi||j), the simulator randomly
selects rij ∈ Z∗q and performs random oracle as H1(IDi||j) =

grij

(gαwβ)cij
. For each hash query H2(π(wk)||j), the simula-

tor can get the corresponding file index set Swk . Then it
randomly selects rkj ∈ Z∗q and performs random oracle as
H2(π(wk)||j) = grkj

(gαwβ)

∑
i∈Swk

cij
. For each hash query H3(j),

the simulator randomly selects rj ∈ Z∗q and performs random
oracles as H3(j) = grj .

Thus, it can compute the authenticator without knowing the
secret key ∂:

σij
= [H1(IDi||j) · ucij ]x

= [ grij

(gαwβ)cij
· (gαwβ)cij ]∂

= [grij ]∂ = [g∂ ]rij

Similarly, the simulator can compute the RAL without
knowing the secret key ∂ :

Ωwk,j

= [(
∏

i∈Swk
H1(IDi||j)−1

) ·H3(j) ·H2(π(wk)||j)]∂

= [ (gαwβ)

∑
i∈Swk

cij

g

∑
i∈Siwk

rij
· grj · grkj

(gαwβ)

∑
i∈Swk

cij
]∂

= [g
rkj+rj−

∑
i∈Swk

rij

]∂

= [g
∂

]
rkj+rj−

∑
i∈Swk

rij

Now, by dividing equation (2) by (1), we can get e(T
∗

T , g) =
e(u∆µ, g∂).

It is clear T∗

T = (gαwβ)∂·∆µ. Thus, we know w∂ =

[T
∗

T · (g
∂)−α·∆µ]

1
β·∆µ .

Because β is randomly chosen from Z∗q and ∆µ 6= 0, the
probability of β·∆µ 6= 0 is 1− 1

q . This means that the simulator
could solve the CDH problem if the difference between the
adversary’s probabilities of success in Game0 and Game1 is
non-negligible.

Game2: Game2 is as same as Game1, with one difference.
If the adversary successfully forges a proof and passes the
verification, but the aggregated data block µ∗ is not in the
record list, Game2 aborts.

Analysis. Suppose the valid auditing proof is (T, µ) and the
forged auditing proof is (T ∗, µ∗). According to equation (1)
and (2), we have:

e(T, g) = e((
∏
j∈Q

(H3(j) ·H2(π(w′)||j))vj ) · uµ, y)

e(T ∗, g) = e((
∏
j∈Q

(H3(j) ·H2(π(w′)||j))vj ) · uµ
∗
, y)
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Next, we will show if Game2 aborts, the simulator can solve
the DL problem.

Given g, w = g∂ , the simulator tries to output ∂. The
simulator behaves like in Game1, except for the following:

The simulator randomly selects α, β ∈ Z∗q and sets u =
gαwβ .

Because Game2 aborts, we have µ 6= µ∗. We define ∆µ =
µ∗ − µ. In Game1, we have showed T = T ∗. Therefore,
uµ = uµ

∗
.

(gαwβ)µ = (gαwβ)µ
∗

⇒ (gαwβ)∆µ = 1

⇒ (gα · g∂·β)
∆µ

= 1
⇒ g−α·∆µ = g∂·β·∆µ

⇒ ∂ = −αβ

As long as β 6= 0 ( the probability is 1− 1
q ), the DL problem

can be solved. This means that if the difference between the
adversary’s probabilities of success in Game1 and Game2 is
non-negligible, the simulator could solve the DL problem.

The hardness of the CDH problem implies the hardness
of the DL problem. Therefore, the difference between these
games is negligible if the CDH problem in G1 is hard.

Finally, we construct a knowledge extractor to complete
this proof. The goal of the knowledge extractor is to extract
cij(i ∈ Sw, j ∈ Q). Without loss of generality, we assume that
the challenger challenges |Q| blocks and |Sw| files contain the
queried keyword. The knowledge extractor selects |Q| · |Sw|
different coefficients and executes |Q|·|Sw| times challenge on
the same auditing challenge. The knowledge extractor could
therefore get |Q| · |Sw| independently linear equations. By
solving these equations, the knowledge extractor could extract
cij(i ∈ Sw, j ∈ Q). Therefore, we have proven that the if the
auditing proof passes the verification, the proposed scheme
achieves auditing soundness.

Theorem 4 (Sensitive information privacy). If the PRP and
PRF are secure, the proposed scheme achieves sensitive infor-
mation privacy.

Proof. We firstly prove that the cloud cannot obtain the
sensitive information. Then prove the TPA cannot obtain the
sensitive information.

Simulating C ′: Given the leakage function L1, S randomly
selects k0 for the CPA-security encryption algorithm. Then he
computes cij ′ = Enc(0|Fij |, k0), and sets C ′ = {cij ′}(1 ≤
i ≤ n, 1 ≤ j ≤ s). Due to the CPA-security encryption
algorithm, C ′ and C are indistinguishable from each other.

Simulating I ′: S randomly selects |w| bits for each π′(wk),
n bits for each ev′π(wk), |Ωπ(wk)| bits for each Ω′π(wk) and sets
I ′ = {π′(wk), ev′π(wk),Ω

′
π(wk)}k=1,2,...,m. Due to the security

of PRP and PRF, I and I ′ are indistinguishable from each
other.

Simulating T ′w′ : If this query has not been queried before,
S randomly selects |w′| bit as π′(w′), and creates an n− bit
binary string v. Leakage function L2 reveals the file index
set Swk . For each 1 ≤ i ≤ n, if i ∈ Swk , S sets v[i] = 1;
otherwise, sets v[i] = 0. S computes f ′(π′(w)) = v⊕ ev′π(w).

Finally, S returns T ′w′ = {π′(w), f ′(π′(w))} to A. If this
query has been queried before, S returns the corresponding
T ′w′ . Due to the security of PRP and PRF, T ′w′ and Tw′ are
indistinguishable from each other.

Therefore, A cannot distinguish C ′ from C, I ′ from
I , and T ′w′ from Tw′ . That is, |Pr[RealA(λ) = 1] −
Pr[IdealA,S(λ) = 1]| ≤ negl(λ). We have proved that the
cloud cannot deduce any sensitive information.

Since the cloud stores the secure index, the encrypted files
and search trapdoor, whereas the TPA only possesses the
search trapdoor, the cloud knows more information than the
TPA. It is clear that the TPA also cannot deduce the relation
between the file and the queried keyword, and the plaintext of
files and the queried keyword.

Now, we show that, from the auditing proof, the T-
PA cannot know which files and how many files contain
the queried keyword. From the equation (1): e(T, g) =
e((

∏
j∈Q

(H3(j) ·H2(π(w′)||j))vj ) · uµ, y), the TPA does not

need to use file identities to check this equation. And the
aggregated data block and aggregated authenticator do not
expose the file identity and the number of files related to the
queried keyword. Therefore, the TPA cannot know which files
and how many files contain the queried keyword.

Discussion. Leakage-abuse attack[19, 20], as one kind of
powerful attacks, threatens the security of searchable encryp-
tion. Most searchable encryption schemes leak search pattern
and access pattern. With above leakage information and some
knowledge of the database, an adversary could build the
co-occurrence matrix to recover the queried keyword. How
to defend the leakage-abuse attack is not the focus of the
proposed scheme. Even if this is considered, it is hard for
the TPA to perform the leakage-abuse attack. In the proposed
scheme, the TPA only knows the encrypted keyword and
the auditing proof, i.e. the aggregated data block and the
aggregated authenticator. So it is unable to get all of the
required leakage information. In this case, the TPA cannot
deduce the plaintext of the queried keyword. However, for the
cloud, it indeed may perform the leakage-abuse attack. We
could apply some selective countermeasures, such as padding
technique[20] to deal with this attack.

VI. PERFORMANCE EVALUATION

A. Numerical Analysis

We use HashG1
, MulG1

and PowG1
to denote one hash

operation, one multiplication operation and one exponentiation
operation in G1, respectively. We use Pair to denote one
pairing operation. Assume there are n files and m keywords
in total. Each file is divided into s blocks. For simplification,
assume each keyword is related to |Sw| files. We neglect the
simple operations like PRP, PRF and XOR. Table II shows
the computation overhead in different phases of our proposed
scheme. The computation overhead for RAL generation is
m · s · [(|Sw|+ 2) ·HashG1 + (|Sw|+ 1) ·MulG1 +PowG1 ].
The computation overhead for authenticator generation is
n·s·(HashG1

+MulG1
+PowG1

). The computation overhead
for proof generation is (2 · c · |Sw| + c) · PowG1

. And the
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TABLE II: Computation overhead

Phase Computation overhead
RAL generation m · s · [(|Sw|+ 2) ·HashG1 + (|Sw|+ 1) ·MulG1 + PowG1 ]

authenticator generation n · s · (HashG1 +MulG1 + PowG1)
proof generation (2 · c · |Sw|+ c) · PowG1

proof verification 2 · Pair + 2 · c ·HashG1 + (c+ 1) ·MulG1 + (c+ 1) · PowG1

computation overhead for proof verification is 2 · Pair + 2 ·
c ·HashG1 + (c+ 1) ·MulG1 + (c+ 1) · PowG1 .

B. Experiment results

We utilize C-programming language, GMP library[21] and
Pairing-Based-Cryptography (PBC) library[22] to simulate the
proposed scheme. We test our experiment on Ubuntu 16.04
LTS with 1 CPU, 25GB Storage, and 1GB RAM. Since the
computation overhead mainly comes from keyword searching
and cloud data auditing, we test the efficiency of them,
respectively. In our experiments, we utilize type-A pairing with
160 bits group order and 512 bits base field order. The length
of each element in Z∗q is 20 bytes, and the length of each
element in G1 is 128 bytes.

1) Evaluation of authenticator generation In the proposed
scheme, each file is composed by multiple data blocks.
The user needs to compute one authenticator for one
data block. We test the authenticator generation time for
different numbers of files, ranging from 100 to 1000,
and different numbers of blocks in each file, ranging
from 100 to 500. As shown in Fig. 6, when 100 files
are about to be uploaded and each file contains 100
blocks, the user needs 58.9s to generate these 100*100
authenticators. When 1000 files are about to be uploaded
and each file contains 500 blocks, the user needs 2865s to
generate these 1000*500 authenticators. The average time
to generate one authenticator is 0.0059s. We can observe
that the authenticator generation time is related to the
number of files and the number of blocks in each file.
In reality, the user only needs to generate authenticators
once, and this work can be done offline.

Fig. 6: The authenticator generation time

2) Evaluation of RAL generation For each keyword, the
user needs to compute s RALs, where s is the total
number of blocks in each file. We test the RAL generation

time for different numbers of blocks in each file, ranging
from 100 to 500, and different numbers of files, ranging
from 100 to 1000. As shown in Fig. 7, when 100 files
contain the keyword and each file contains 100 blocks, the
user needs 27.1s to generate the RAL. When 1000 files
contain the keyword and each file contains 500 blocks,
the user needs 1308s to generate the RAL. When 100 files
contain the keyword, the average time of generating one
RAL for one block is 0.268s. When 1000 files contain the
keyword, the average time of generating one RAL for one
block is 0.281s. We can observe that the RAL generation
time is related to the number of files containing the
keyword and the number of blocks in each file. In reality,
the user only needs to generate the RAL once when he
computes the secure index, and this work can also be
done offline.

Fig. 7: The RAL generation time

3) Evaluation of RAL update When the user
adds/deletes/updates files, our scheme achieves nice
efficiency for the RAL update. The main reason is that
the user does not need to re-execute the entire RAL
generation. We test the RAL update time for different
numbers of the affected files, ranging from 2 to 20.
In our test, we assume there are total 1000 files. As
shown in Fig. 8, when there are two affected files, the
user needs 1301.33s if he re-executes the entire RAL
generation. In contrast, the user only needs 2.51s to
update the RAL in our scheme.

4) Evaluation of proof generation For one queried key-
word, the cloud needs to use all files containing this
keyword to compute the auditing proof. In our test,
there are total 10000 files in the cloud. We test the
proof generation time for different numbers of challenged
blocks, ranging from 100 to 1000, and different numbers
of files that contain the queried keyword, ranging from
100 to 1000. As shown in Fig.9, when 100 files contain
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Fig. 8: The RAL update time

the queried keyword and the TPA challenges 100 blocks,
the cloud needs 2.688s to generate the auditing proof.
When 1000 files contain the queried keyword and the
TPA challenges 1000 blocks, the cloud needs 241.33s to
generate the auditing proof.

Fig. 9: The proof generation time

We also compare the search time with the auditing proof
generation time. In this experiment, the TPA challenges
300 blocks. On average, the cloud needs 0.131s to finds
all of files that contain the queried keyword. As shown in
Fig. 10, when 0.05% of the total files contain the queried
keyword, the cloud needs 76.73% of the total time to
compute the auditing proof (the aggregated authenticator
and the aggregated data block). When 10% of the total
files contain the queried keyword, the cloud needs 99.7%
of the total time to generate the auditing proof.

5) Evaluation of challenge generation and proof verifi-
cation The TPA needs to generate the auditing challenge
and verify the auditing proof. We test the challenge gen-
eration time and the proof verification time for different
numbers of challenged blocks, ranging from 100 to 1000,
and different numbers of queried keywords. As shown in
Fig.11 and Fig. 12, when challenging 100 blocks and one
keyword, the TPA only needs 0.000054s to generate the
auditing challenge and 0.0085362s to verify the auditing
proof. When challenging 1000 blocks and 5 keywords, the
TPA needs 0.0026s to generate the auditing challenge and
0.04233s to verify the auditing proof. We can observe that
the challenge generation time and the proof verification

time are related to the number of challenged blocks and
the number of queried keywords.

Fig. 11: The challenge generation time

Fig. 12: The proof verification time

Fig. 13: The computation overhead comparison

6) The comparison among search, challenge generation
and proof verification We evaluate the scalability and
the practicality of the proposed scheme in a commonly
used real-world dataset (Enron email dataset[23], https://
www.cs.cmu.edu/enron/) by comparing search/challenge
generation and proof verification. This dataset contains
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(a) (b)

(c) (d)

Fig. 10: The comparison between the search time and proof generation time

12,000 email files in total. To evaluate the scalability
of the proposed scheme, we sample different number of
files, ranging from 1000 to 10000. As shown in Fig.13,
when there are 1000 files, the cloud needs 0.009s to
extract files that contain the queried keyword. The TPA
needs 0.000147s to generate the auditing challenge and
0.00258s to verify the auditing proof. When there are
10000 files, the cloud needs 0.111s to extract files that
contain the queried keyword. The search time is linear to
the number of files. The computational overhead of the
TPA is independent of the number of files. Therefore,
the proposed scheme is practical and can be applied to
large-size data set.

7) Evaluation of the computation and the storage over-
head of the secure index The user needs to generate
the secure index for all files. As shown in Fig. 14 and
Fig.15, when there are 1000 files, the user needs 1.278s
to generate the secure index, and the size of the secure
index is 16.64MB. When there are 10000 files, the user
needs 30.918s to generate the secure index, and the size
of the secure index is 466.51MB. We can observe that
the secure index generation time is related to the number
of files.

Fig. 14: The secure index generation time

VII. RELATED WORK

Cloud data auditing Provable Data Possession (PDP)[6]
and Proof of Retrievability(POR)[24] are used to check the
integrity of users data without retrieving all of them. The
data stored in the cloud are often updated, supporting data
dynamic is an essential requirement in PDP/POR. Ateniese et
al.[25] proposed the first dynamic PDP scheme which supports
data deletion and modification. Wang et al.[14] proposed a
fully dynamic PDP scheme based on the Merkle Hash Tree.
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Fig. 15: The size of the secure index

This scheme supports all data dynamic operations including
deletion, modification and insertion. Protecting the privacy is
essential for PDP in some scenarios. The TPA should not
obtain the file content or the user identity because its duty is
only to check the integrity of the cloud file. To prevent the TPA
from deducing the file content, Wang et al.[18] proposed the
first privacy-preserving PDP scheme by utilizing the random-
masking technique. To prevent the TPA from deducing the
user identity, Wang et al. designed two PDP schemes[26, 27]
based on ring signature and group signature. In their schemes,
TPA can perform the auditing task without knowing the user
identity. In the cloud data sharing scenario, users are often
enrolled or revoked from a group. Wang et al.[28] utilized
proxy re-signature technique to achieve user revocation in
PDP. Once the user is revoked from a group, the authenticators
generated by him should not be valid any more. Zhang et
al.[29] realized more efficient user revocation by updating the
non-revoked users signing key instead of their authenticators.
Wang et al.[30] addressed the data transfer problem in PDP. In
their scheme, the data transfer task can be securely outsourced
to the public cloud. Yu et al.[31, 32] addressed the key-
exposure problem in PDP. In their schemes, the adversary
cannot forge any authenticator before or after the key-exposure
period. All above-mentioned schemes are designed for check-
ing the integrity of the specified file under the condition that
the TPA provides the file name/identity. Different from the
existing schemes, the TPA could check the integrity of all
encrypted cloud files containing the specific keyword only with
the search trapdoor in our proposed scheme. In other words,
this paper initiates the first study on how to achieve integrity
auditing based on the keyword for encrypted cloud files. In
addition, our proposed scheme achieves sensitive information
privacy. The TPA cannot deduce which files and how many
files containing the queried keyword from the auditing proof
in our proposed scheme.

Searchable Encryption(SE) Song et al.[33] proposed the
first symmetric searchable encryption with two-layered en-
cryption structure. However, the search time is linearly related
to the number of files in the cloud. To improve efficiency
and achieve data update in SE, Kamara et al.[34] proposed
a dynamic SE scheme based on the inverted index. This ap-

proach can achieve sub-linear search time. Due to the spelling
errors, the keyword queried by the user may not exactly match
the one stored in the cloud. Li et al.[35] proposed the first
fuzzy SE scheme over encrypted data. Their scheme utilizes
edit distance to evaluate the similarity between two keywords.
In order to retrieve files in a ranked order, Wang et al.[36]
proposed the first ranked SE scheme. However, the above-
mentioned schemes cannot guarantee the correctness and the
completeness of search results. In other words, the malicious
cloud could just return partial search results which do not
contain all of the required files. Besides, the file contents can
also be tampered. Verifiable Searchable Encryption(VSE)[37]
has been proposed to address these issues. Zhu et al.[38]
proposed the first generic VSE in multi-user mode. They
also applied Merkle Patricia Tree to support data dynamic.
In order to realize the search results verifiability and defend
the keyword guessing attack[39], Miao et al.[40] proposed a
verifiable searchable encryption scheme. They also extended it
to support data dynamic, multi-keyword query and multi-key
encryption. Miao et al.[41] proposed a VSE scheme based
on enhanced vector commitment. They also extended it to
support database dynamic and conjunctive keyword search.
The conjunctive keyword search scheme proposed by Wang
et al.[42] can achieve the verification of the search result
even if this result is an empty set. Ge et al.[12] designed the
Accumulative Authentication Tag(AAT) to achieve dynamic
VSE. Since the AAT is based on symmetric-key cryptography,
it is more efficient than RSA accumulator[11] and bilinear
map accumulator[5]. Data dynamic operations for SE may lead
to some secure issues, such as leakage-abuse attacks[19, 20].
In this attack scenario, the cloud could deduce whether the
newly added file matches the previously searched keyword.
Forward secure SSE[10] was proposed to address this security
issue. Zhang et al.[43] firstly considered the verification for
forward secure SSE, and proposed an efficient forward secure
VSE scheme based on multiset hash functions. Compared with
other related works, their scheme achieves superior efficiency
of search and data update. Li et al.[44] proposed a forward
and backward secure keyword search scheme with flexible
keyword shielding and un-shielding. They provided the formal
security proof for the proposed scheme. Wang et al.[45]
proposed a spatial dynamic searchable encryption scheme.
Besides, they gave an improved scheme to ensure the forward
privacy. Li et al.[46] extended the notation of forward privacy,
and proposed a new notation called forward search privacy. It
ensures that the query on newly added files does not leak any
information about past queries.

VIII. DISCUSSION AND FUTURE WORK

Our scheme enables the TPA to audit the integrity of all
encrypted cloud files containing one specific keyword without
exposing sensitive information. In the future, the following
problems can be further explored.

Enriching the functions. The proposed scheme in this
paper only supports integrity auditing based on one keyword.
In order to enrich the functions, we will further explore how
to enable the TPA to perform the integrity auditing based
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on complex query conditions, such as multiple keywords
query[13][41][47] and the SQL-like query[48][49][50]. Exist-
ing approaches of verifiable multiple keywords search schemes
and verifiable rich query schemes might be good candidates.
However, these approaches cannot be directly applied to the
cloud data auditing as they expose sensitive information to the
TPA. Therefore, it is interesting to design new forms of RAL
for supporting complex functions in these scenarios.

Improving computation and storage efficiency. In the
proposed scheme, the user needs to compute one RAL for each
keyword and each data block. The cloud also needs to store all
of these RALs along with the secure index. The computation
overhead and storage overhead of the RAL is O(WN), where
W is the number of keywords and N is the number of data
blocks. It is a challenge to further reduce the computation
overhead and the storage overhead to make the complexity
independent of W or N .

Protecting forward and backward privacy. The proposed
scheme supports data dynamic updates. It is efficient for the
user to update the data, the authenticator and the RAL in this
scheme. Note that data dynamics may lead to some secure
issues, such as the leakage-abuse attacks. We do not consider
forward and backward privacy for them in this paper. It is
very valuable to design new schemes to protect forward and
backward privacy.

IX. CONCLUSION

In this paper, we address a new problem of how to achieve
cloud data integrity auditing based on the keyword with
sensitive information privacy. We design a new label called
RAL, which is used to not only authenticate the relation
that files contain the queried keyword but also generate the
auditing proof without exposing any identity of file containing
the queried keyword. We prove the security of the proposed
scheme and evaluate the practical effectiveness by comprehen-
sive experiments.
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