
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

1

Scheduling of Real-Time Tasks with Multiple
Critical Sections in Multiprocessor Systems

Jian-Jia Chen, Junjie Shi, Georg von der Brüggen, and Niklas Ueter
Department of Informatics, TU Dortmund University, Germany

{jian-jia.chen, junjie.shi, georg.von-der-brueggen, niklas.ueter}@tu-dortmund.de

Abstract—The performance of multiprocessor synchronization and locking protocols is a key factor to utilize the computation power of
multiprocessor systems under real-time constraints. While multiple protocols have been developed in the past decades, their
performance highly depends on the task partition and prioritization. The recently proposed Dependency Graph Approach showed its
advantages and attracted a lot of interest. It is, however, restricted to task sets where each task has at most one critical section. In this
paper, we remove this restriction and demonstrate how to utilize algorithms for the classical job shop scheduling problem to construct a
dependency graph for tasks with multiple critical sections. To show the applicability, we discuss the implementation in LITMUSRT and
report the overheads. Moreover, we provide extensive numerical evaluations under different configurations, which in many situations
show significant improvement compared to the state-of-the-art.

Index Terms—Real-Time Systems, Multiprocessor Resource Synchronization, Job Shop, and Dependency Graph Approaches

F

1 INTRODUCTION

UNDER the von-Neumann programming model, shared
resources that require mutual exclusive accesses, such

as shared files, data structures, etc., have to be protected
by applying synchronization (binary semaphores) or locking
(mutex locks) mechanisms. A protected code segment that
has to access a shared resource mutually exclusively is
called a critical section. For uniprocessor real-time systems,
the state-of-the-art are longstanding protocols that have
been developed in the 90s, namely the Priority Inheritance
Protocol (PIP) and the Priority Ceiling Protocol (PCP) by
Sha et al. [34], as well as the Stack Resource Policy (SRP)
by Baker [3]. Specifically, a variant of PCP has been imple-
mented in Ada (called Ceiling locking) and in POSIX (called
Priority Protect Protocol).

Due to the development of multiprocessor platforms,
multiprocessor resource synchronization and locking pro-
tocols have been proposed and extensively studied, such
as the Distributed PCP (DPCP) [33], the Multiprocessor
PCP (MPCP) [32], the Multiprocessor SRP (MSRP) [16],
the Flexible Multiprocessor Locking Protocol (FMLP) [4],
the Multiprocessor PIP [13], the O(m) Locking Protocol
(OMLP) [7], the Multiprocessor Bandwidth Inheritance (M-
BWI) [15], and the Multiprocessor resource sharing Proto-
col (MrsP) [8]. Since the performance of these protocols
highly depends on task partitioning, several partitioning
algorithms were developed in the literature, e.g., for MPCP
by Lakshmanan et al. [26] and Nemati et al. [30], for
MSRP by Wieder and Brandenburg [42], and for DPCP by
Hsiu et al. [21], Huang et. al [22], and von der Brüggen et
al. [40]. In addition to the theoretical soundness of these
protocols, some of them have been implemented in the real-
time operating systems LITMUSRT [5], [9] and RTEMS 1.

For several decades, the primary focus when consid-
ering multiprocessor synchronization and locking in real-

1. http://www.rtems.org/

time systems has been the design and analysis of resource
sharing protocols, where the protocols decide the order
in which the new incoming requests access the shared
resources dynamically. Contrarily, the Dependency Graph
Approaches (DGA), that was proposed by Chen et al. [11]
in 2018, pre-computes the order in which tasks are allowed
to access resources, and consists of two individual steps:

1) A dependency graph is constructed to determine the
execution order of the critical sections guarded by one
binary semaphore or mutex lock.

2) Multiprocessor scheduling algorithms are applied to
schedule the tasks by respecting the constraints given
by the constructed dependency graph(s).

Chen et al. [11] showed significant improvement against
existing protocol-based approaches from the empirical as
well as from the theoretical perspective, and demonstrated
the practical applicability of the DGA by implementing it in
LITMUSRT [5], [9]. However, the original dependency graph
approaches presented in [11] has two strong limitations:
1) the construction in the first step allows only one critical
section per task, and 2) the presented algorithms can only
be applied for frame-based real-time task systems, i.e., all
tasks have the same period and release their jobs always at
the same time. The latter has been recently removed by Shi
et al. [36], who applied the DGA after unrolling the jobs in
the hyper-period. However, the former remains open and
is a fundamental obstacle which limits the generality of the
dependency graph approaches.

In the original DGA, the assumption that each task has
only one non-nested critical section allows the algorithm to
partition the tasks according to their shared resources in the
first step. However, when a task accesses multiple shared re-
sources, such a partitioning is no longer possible. Therefore,
to enable the DGA for tasks with multiple critical sections,
an exploration of effective construction mechanisms for a
dependency graph that considers the interactions of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

2

shared resources is needed.
Contribution: In this paper, we focus on allowing mul-
tiple critical sections per task in the dependency graph
approaches for both frame-based and periodic real-time task
systems with synchronous releases. Our contributions are:
• Our key observation is the correlation between the

dependency graph in DGA and the classical job shop
scheduling problem. With respect to the computational
complexity, we present a polynomial-time reduction
from the classical job shop scheduling problem, which is
NP -hard in the strong sense [28]. Intractability results
are established even for severely restricted instances of
the studied multiprocessor synchronization problem, as
detailed in Sec. 3.

• For frame-based task sets, we reduce the problem of
constructing the dependency graph in the DGA to
the classical job shop scheduling problem in Sec. 4, and
establish approximation bounds for minimizing the
makespan based on the approximation bounds of job-
shop algorithms. Sec. 4.3 details how these results can
be extended to periodic real-time task systems.

• We explain how we implemented the dependency
graph approach with multiple critical sections in
LITMUSRT and report the overheads in Sec. 5, showing
that our new implemented approach is comparable to
the existing methods with respect to the overheads.

• We provide extensive numerical evaluations in Sec. 6,
which demonstrate the performance of the proposed
approach under different system configurations. Com-
pared to the state-of-the-art, our approach shows sig-
nificant improvement for all the evaluated frame-based
real-time task systems and for most of the evaluated
periodic task systems.

2 SYSTEM MODEL

2.1 Task Model
We consider a set T of n recurrent tasks to be scheduled
on M identical (homogeneous) processors. All tasks can
have multiple (non-nested) critical sections and may access
several of the Z shared resources. Each task τi is described
by τi = ((ηi, Ci), Ti, Di), where:
• ηi is the number of computation segments in task τi.
• Ci is the total worst-case execution time (WCET) of the

computation segments in task τi.
• Ti is the period of τi.
• Di is the relative deadline of τi.

We consider constrained deadlines, i.e., ∀τi ∈ T, Di ≤ Ti.
For the j-th segment of task τi, denoted as θi,j = (Ci,j , λi,j):
• Ci,j ≥ 0 is the WCET of computation segment θi,j with
Ci =

∑ηi
j=1 Ci,j .

• λi,j indicates whether the corresponding segment is a
non-critical section or a critical section. If θi,j is a critical
section, λi,j is 1; otherwise, λi,j is 0.

• If θi,j is a non-critical section, then θi,j−1 and θi,j+1

must be critical sections (if they exist). That is, θi,j and
θi,j+1 cannot be both non-critical sections.

• If θi,j is a critical section, it starts from the lock of a
mutex lock (or wait for a binary semaphore), denoted
by σi,j , and ends at the unlock of the same mutex lock
(or signal to the same binary semaphore).

Furthermore, we make following assumptions:
• Each task releases one job in the beginning of each

period. Therefore, each computation segment within
one task releases one instance accordingly, which is
treated as a sub-job of the corresponding job.

• A job cannot be executed in parallel, i.e., the sub-jobs in
a job must be sequentially executed.

• The execution of the critical sections guarded by a mu-
tex lock (or one binary semaphore) must be sequentially
executed. Hence, if two computation segments share
the same lock, they must be executed one after another.

• There are in totalZ mutex locks (or binary semaphores).
We consider two kinds of task systems, namely:
• Frame-based task systems: all tasks release their jobs at

the same time and have the same period and relative
deadline, i.e., ∀i, j, Ti = Tj ∧ Di = Dj . Hence, the
analysis can be restricted to one job of each task.

• Periodic task systems (with synchronous release): all
tasks release their first job at time 0 and subsequent jobs
are released periodically, but different tasks may have
different periods and relative deadlines. The hyper-
period of the task set T is defined as the least common
multiple (LCM) of the periods of the tasks in T.

2.2 Problem Definition and Approximation

In this subsection, we define the problem of scheduling
frame-based real-time tasks with multiple critical sections
in homogeneous multiprocessor systems.

We define a schedule from the sub-job’s perspective.
Suppose that Θ is the set of the computation segments, i.e.,
Θ = {θi,j | τi ∈ T, j = 1, 2, . . . , ηi}. A schedule for T is a
function ρ : R×M → Θ∪{⊥}, where ρ(t,m) = θi,j denotes
that the sub-job θi,j is executed at time t on processor m,
and ρ(t,m) = ⊥ denotes that processor m is idle at time
t. Since a job has to be sequentially executed, at any time
point t ≥ 0, only a sub-job of τi can be executed on one of
the M processors, i.e., if ρ(t,m) is θi,j , then ρ(t,m′) 6= θi,k
for any k ≤ ηi and m′ 6= m. Moreover, since the sub-jobs of
a job must be executed sequentially, θi,k cannot be executed
before θi,j finishes for any j < k ≤ ηi, i.e., if ρ(t,m) is θi,j
for some t,m, i, j, then ρ(t′,m) 6= θi,k for any t′ ≤ t and any
k > j. The critical sections guarded by one mutex lock must
be sequentially executed. That is, if λi,j is 1, λk,` is 1, and
σi,j = σk,` then a schedule must guarantee ρ(t,m′) 6= θk,`
for any t ≥ 0 and m 6= m′ when ρ(t,m) is θi,j .

We only consider schedules that can finish the execution
demand of the computation segments. LetR be the finishing
time of the schedule. In this case,

∑M
m=1

∫ R
0 [ρ(t,m) = θi,j]dt

must be equal to Ci,j , where [P] is the Iverson bracket, i.e.,
[P] is 1 when the condition P holds, otherwise [P] is 0. Note
that the integration is used in this paper only as a sym-
bolic notation to represent the summation over time. The
earliest moment when all sub-jobs finish their computation
segments in the schedule (under all the constraints defined
above) is called the makespan of the schedule, commonly
denoted as Cmax in scheduling theory, i.e., Cmax of schedule
ρ is:

min. R s. t.
M∑
m=1

∫ R

0
[ρ(t,m) = θi,j]dt = Ci,j ,∀θi,j ∈ Θ

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

3

A schedule is non-preemptive from the sub-job’s perspec-
tive if a sub-job cannot be preempted, i.e., there is only
one interval with ρ(t,m) = θi,j on processor m for any
sub-job θi,j in Θ. A schedule is preemptive from the sub-
job’s perspective if a sub-job can be preempted, i.e., more
than one interval with ρ(t,m) = θi,j for any task θi,j
in Θ on processor m is allowed. A critical section θi,j in
a preemptive schedule can be preempted by non-critical
sections or other critical sections that are unrelated to σi,j .

For a partitioned schedule, all sub-jobs of a job have to
be executed on one processor, i.e., there is one processor m
with ρ(t,m) = θi,j for t ≥ 0 and j = 1, 2, . . . , ηi for every
task τi in T. For a global schedule, a sub-job can be arbitrarily
executed on any of the M processors at any time point. That
is, it is possible that ρ(t,m) = θi,j and ρ(t′,m′) = θi,j for
m 6= m′ and t 6= t′. For a semi-partitioned schedule, a sub-job
has to be executed only on one processor.

A partitioned or a semi-partitioned schedule can be
preemptive or non-preemptive from the sub-job’s perspec-
tive. A global schedule in the above definition is always a
preemptive schedule from the sub-job’s perspective.

The problem of multiprocessor synchronization with
multiple critical sections per task can be transferred to the
following two general problems:

Definition 1. Multiprocessor Multiple critical-Sections
task Synchronization (MMSS) makespan problem: Assume
M identical (homogeneous) processors and that n tasks are
arriving at time 0. Each task τi is composed of ηi computation
segments, each of which is either a non-nested critical section
or a non-critical section. The objective is to find a schedule that
minimizes the makespan.

A feasible schedule of the MMSS makespan problem is a
schedule that satisfies all aforementioned non-overlapping
constraints. An optimal solution of an input instance of the
MMSS makespan problem is the makespan of a schedule
that has the minimum makespan among the feasible sched-
ules of the input instance. An algorithm A for the MMSS
makespan problem has an approximation ratio a ≥ 1, if given
any task set T and M processors, the resulting makespan is
at most a · C∗max, where C∗max is the optimal makespan.

Definition 2. The MMSS schedulability problem: Assume
there are M identical (homogeneous) processors and that n tasks
are arriving at time 0. All tasks τi have the same deadline D.
Each task is composed of ηi computation segments, each of which
is either a non-nested critical section or a non-critical section. The
objective is to find a feasible schedule that meets the deadline D
on the given M processors.

A feasible schedule of the MMSS schedulability problem
is a schedule that has a makespan no more than D and
satisfies all the non-overlapping constraints. The MMSS
schedulability problem is a decision problem, in which for
a given D and a given algorithm either a feasible schedule
is derived that meets the deadlines or no feasible schedule
can be derived from the algorithm. For such a decision
setting, the speedup factor [23], [31] can be used to examine
the performance. Provided that there exists one feasible schedule
at the original speed, the speedup factor a ≥ 1 of a scheduling
algorithm A for the MMSS schedulability problem is the
factor a ≥ 1 by which the overall speed of a system would

need to be increased so that the algorithm A always derives
a feasible schedule.

2.3 Notation from Scheduling Theory
In this subsection, for completeness, we summarize the
classical flow shop and job shop scheduling problems in
operations research (OR). In scheduling theory, a scheduling
problem is described by a triplet α|β|γ.
• α describes the machine (i.e., processing) environment.
• β specifies the characteristics and constraints.
• γ is the objective to be optimized.

The widely used machine environment in α are:
• 1: single machine (or uniprocessor).
• P : independent machines (or homogeneous multipro-

cessor systems).
• FM : flow shop. The environment FM consists of M

machines and each job i has a chain of M sub-jobs, de-
noted as Oi,1, Oi,2, . . . , Oi,M , where the M operations
are executed in the specified order and Oi,m is executed
on the m-th machine. A job has to finish its operation
on the m-th machine before it can start any operation
on the (m+1)-th machine, for any m = 1, 2, . . . ,M−1.

• JM : job shop, i.e., a job i has a chain of ηi sub-jobs,
denoted as Oi,1, Oi,2, . . . , Oi,ηi , where the ηi operations
should be executed in the specified order and Oi,m is
executed on a specified machine. Note that a flow shop
is a special case of a job shop environment.

In this paper, we are specifically interested in three con-
straints specified in β:
• prmp: preemptive scheduling. In classical scheduling

theory, preemption in parallel machines implies the
possibility of job migration from one machine to an-
other machine.

• rj : with specified arrival time of the job (and deadline).
• li,j : preparation time between dependent job pair, i.e.,

job i and job j.
• prec: the jobs have precedence constraints.

Note that the scheduler is implicitly assumed to be non-
preemptive if prmp is not specified. Furthermore, the job
set is assumed to arrive at time 0 if rj is not specified.
In addition, we are specifically interested in two objectives
specified in γ:
• Cmax: to minimize the makespan, as defined in Sec. 2.2.
• Lmax: to minimize the maximum lateness over all jobs,

in which the lateness of a job is defined as its finishing
time minus its absolute deadline.

2.4 Critical Sections Access Patterns
Two types of access patterns of the critical sections are
considered, which we name according to the applicable
algorithms for convenience:
• Flow-Shop Compatible Access Patterns: A task set has

a pattern where flow-shop approaches can be applied, if
all tasks access each resource (in a non-nested manner)
at most once and a total order ≺ in which tasks access
the resources can be constructed over all tasks in the
set. Hence, a flow-shop pattern means that σi,j′ ≺ σi,j
when j′ < j and θi,j′ and θi,j are both critical sections.
In such a case, we can assume that the mutex locks
are indexed according to the specified total order set.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

4

Although the order must be always respected, a task
does not need to access all the mutex locks. That is, the
access pattern of the mutex locks of a task is a subset of
the specified total order set.

• Job-Shop Compatible Access Patterns allow tasks to
accesses shared resources multiple times and without
any restriction on the order, in which resources are
accessed.

Flow-shop compatible access patterns are a very restrictive
special case of the much more general job-shop compatible
access patterns. We implicitly assume job-shop compatible
access patterns if not specified differently, but examine
flow-shop compatible access patterns when showing certain
complexity results.

3 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we provide a short overview of results
regarding job shop and flow shop problems in the literature
at first. Afterwards, we explain the connection of the MMSS
schedulability problem to the job and flow shop problem
by showing different reductions that can be later applied
for demonstrating different scenarios with respect to their
computational complexity.

3.1 Literature Review of Shop Scheduling
Since the late 1950s, many computational complexity results,
approximation algorithms, heuristic algorithms, and tools
for job and flow shop scheduling problems have been estab-
lished. Intractability results have been well-established even
for severely restricted instances of job shop or flow shop
problems. The reader is referred to the surveys by Lawler et
al. [27] and Chen et al. [10] for details.

Specifically, the following restricted scenarios are
NP -complete in the strong sense:
• J2||Cmax, see [28].
• J3|pi,j = 1|Cmax, i.e., unit execution time, see [28].
• J3|n = 3|Cmax, i.e., 3 jobs with multiple operations on

3 shops, see [39].
• F3||Cmax, i.e., three-stage flow shop [17].
• F2|rj |Cmax, i.e., two-stage flow shop with arrival times,

as shown in [28].
• F2|pi,j = 1, tj |Cmax, i.e., two-stage flow shop with unit

processing time and transportation time between the
finishing time of the first and the starting time of the
second stage [44].

The best polynomial-time approximation algorithm for the
general JM ||Cmax problem was provided by Shmoys et
al. [38], showing an approximation ratio of O

(
log2(Mµ)

log log(Mµ)

)
,

where M is the number of shops and µ is the maximum
number of operations per job. The approximation ratio of
this algorithm was later improved by Goldberg et al. [18],
showing a ratio of O

(
log2(Mµ)

(log log(Mµ))2

)
.

Whether there exists a polynomial-time algorithm with
a constant approximation ratio for the general FM ||Cmax

or JM ||Cmax problem remained open until 2011, when
Mastrolilli and Svensson [29] showed that FM ||Cmax (and
hence JM ||Cmax) does not admit any polynomial-time ap-
proximation algorithm with a constant approximation ratio.
Moreover, they also showed that the lower bound on the

Chen et al. in [11] M ≥ n+ 1, any scheduling paradigm

Theorem 1 M ≥ Z, semi-partitioned scheduling paradigm

Theorem 2 and [28] M ≥ n > Z = 2, partitioned scheduling paradigm

Theorem 2 and [28]
M ≥ n > Z = 3, unit execution time,

partitioned scheduling paradigm

Theorem 2 and [39]
M ≥ n = 3, Z = 3, partitioned scheduling paradigm

(with multiple visits to a mutex lock per job)

Theorem 3 and [17]
M ≥ n > Z = 3, partitioned scheduling paradigm

(with flow-shop compatible access patterns)

Theorem 4 and [28] M = Z = 2, semi-partitioned scheduling paradigm

Theorem 5 and [28]
Z =M = 3, unit execution time,

semi-partitioned scheduling paradigm

Theorem 6 and [39]
n = Z =M = 3,

(semi-)partitioned scheduling paradigm

Theorem 7 and [17]
Z =M = 3, semi-partitioned scheduling paradigm

(with flow shop access patterns)

Theorem 8 and [44]
Z = 1, ηi ≥ 3,M ≥ n, unit execution time,

any scheduling paradigm

TABLE 1
The complexity results that are known and discussed in this work.

approximation ratio is very close to the existing upper
bound provided by Goldberg et al. [18].

In Sec. 3.3, we demonstrate that the MMSS schedulability
problem is already NP -complete in the strong sense for
very restrictive scenarios, even when M and Z are both
extremely small. In Sec. 3.4, we further reduce from the
master-slave problem [44] to show that the MMSS schedu-
lability problem is NP -complete in the strong sense even
when there are two critical sections that access the unique
shared resource with unit execution time per task.

3.2 Reductions from the Job/Flow Shop Problem

Chen et al. [11] showed that a special case of the MMSS
makespan problem is NP -hard in the strong sense when a
task has only one critical section and M is sufficiently large.
The MMSS schedulability problem is the decision version
of the MMSS makespan problem. We therefore focus on
the hardness of the decision version in Definition 2. Here,
we provide reductions from the job/flow shop scheduling
problems to different restricted scenarios of the MMSS
schedulability problem. Such reductions are used in Sec. 3.3
for demonstrating the NP -completeness for different sce-
narios. The complexity results are shown in Table 1.

We start from the more general scenario under the semi-
partitioned scheduling paradigm.

Theorem 1. Under the semi-partitioned scheduling paradigm,
there is a polynomial-time reduction from an input instance of
the decision version of the job shop scheduling problem JZ ||Cmax

with Z shops to an input instance of the MMSS schedulability
problem that has Z mutex locks on M processors with M ≥ Z.

Proof. The proof is based on a polynomial-time reduc-
tion from an instance of the job shop scheduling problem
JZ ||Cmax to the MMSS schedulability problem. We present
a polynomial-time reduction from the job shop scheduling
problem JZ ||Cmax to the MMSS schedulability problem.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

5

Suppose a given input instance with n jobs of the job shop
scheduling problem JZ ||Cmax.
• We have Z shops with non-preemptive execution.
• A job i is defined by a chain of ηi sub-jobs, denoted as
Oi,1, Oi,2, . . . , Oi,ηi . The processing time of Oi,j is Ci,j .

• These ηi operations should be executed in the specified
order andOi,m is executed on one of the given Z shops,
i.e., on shop s(Oi,m), where s(Oi,m) ∈ {1, 2, . . . , Z}.

The decision version of the job shop scheduling problem is
to decide whether there is a non-preemptive schedule whose
makespan is no more than a given D. The polynomial-time
reduction to the MMSS schedulability problem is as follows:
• There are M ≥ Z processors.
• There are Z mutex locks, indexed as 1, 2, . . . , Z .
• For a job i of the input instance of the job shop schedul-

ing problem, we create a task τi, which is composed of
ηi computation segments. The execution time of θi,j is
the same as the processing time of the operation Oi,j .
The mutex lock σi,j used by θi,j is s(Oi,m).

• The deadline of the tasks is D and the period is T = D.
We denote the above input instance of the job shop schedul-
ing problem as I (the MMSS schedulability problem as I ′,
respectively). We show that there exists a feasible schedule
ρ for I (in the job shop scheduling problem) if and only
if there exists a feasible schedule ρ′ for I ′ (in the MMSS
schedulability problem).2

Only-if part: Suppose ρ is a feasible schedule for I , i.e.,(
Z∑

m=1

∫ D

0
[ρ(t,m) = Oi,j]dt

)
= Ci,j ,∀Oi,j (1)

and ρ(t,m) 6= Oi,j for any t and m if s(Oi,j) 6= m. Since the
execution on shops ins non-preemptive, if two operations
Oi,j and Ok,` are supposed to be executed on a shop z,
they are executed sequentially in ρ. As a result, without any
conflict, for 0 ≤ t ≤ D, we can set

ρ′(t,m) =

{
⊥ if ρ(t,m) = ⊥
θi,j if ρ(t,m) = Oi,j

(2)

In the schedule ρ′, critical sections guarded by the mutex
lock z are executed sequentially on the z-th processor.
Therefore,(

Z∑
m=1

∫ D

0
[ρ′(t,m) = θi,j]dt

)
= Ci,j ,∀θi,j ∈ Θ (3)

and all the constraints for a feasible schedule for I ′ are met.
Such a schedule is a semi-partitioned and non-preemptive
schedule (from the sub-job’s perspective), which is also a
global preemptive schedule (from the job’s perspective).

If part: Suppose that ρ′ is a feasible schedule for I ′, i.e.,

M∑
m=1

∫ D

0
[ρ′(t,m) = θi,j]dt = Ci,j ,∀θi,j ∈ Θ (4)

and the schedule ρ′ executes any two critical sections θi,j
and θk,` with σi,j = σk,` = z sequentially. Therefore, for a
mutex lock z ∈ {1, 2, . . . , Z}, the critical sections guarded

2. Although we do not formally define the schedule function of
the job shop scheduling problem, we believe that the context is clear
enough by replacing the use of the computation segments with the
operations.

by z must be sequentially executed. As a result, without any
conflict, for 0 ≤ t ≤ D, we can set

ρ(t, z) =

{
Oi,j if ∃m with ρ′(t,m) = θi,j and σi,j = z

⊥ otherwise
(5)

However, since we do not put any constraint on the feasible
schedule ρ′, it is possible that the execution of Oi,j on shop
z is not continuous. Suppose that ai,j (fi,j , respectively)
is the first (last, respectively) time instant when Oi,j is
executed on shop z in ρ. Since the schedule ρ′ executes
any two critical sections θi,j and θk,` sequentially when
σi,j = σk,` = z, we know that for any t between ai,j
and fi,j either ρ(t, z) = Oi,j or ρ(t, z) = ⊥. Therefore,
we can simply set ρ(t, z) to Oi,j for any t in the time
interval [ai,j , ai,j + Ci,j) and set ρ(t, z) to ⊥ for any t in
[ai,j + Ci,j , fi,j). The resulting schedule ρ executes all the
operations non-preemptively on the corresponding shops.
Therefore, all the scheduling constraints of the job shop
scheduling problem are met and(

Z∑
m=1

∫ D

0
[ρ(t,m) = Oi,j]dt

)
= Ci,j ,∀Oi,j (6)

We note that there is no specific constraint of scheduling
imposed by the schedule ρ′.

The proof of Theorem 1 is not valid for the more re-
strictive partitioned scheduling paradigm, i.e., all the com-
putation segments of a task must be executed on the same
processor, since the constructed schedule ρ′ in the proof of
the only-if part is not a partitioned schedule. Interestingly,
if we use an abundant number of processors, i.e., M ≥ n,
then the reduction in Theorem 1 holds for the partitioned
scheduling paradigm as well.

Theorem 2. Under the partitioned scheduling paradigm, there
is a polynomial-time reduction which reduces from an input
instance of the decision version of the job shop scheduling problem
JZ ||Cmax with Z shops to an input instance of the MMSS
schedulability problem that has n tasks and Z mutex locks on
M processors with M ≥ n ≥ Z .

Proof. The proof is identical to the proof of Theorem 1 by
ensuring that ρ′ constructed in the only-if part in the proof
of Theorem 1 can be converted to a partitioned schedule.
Instead of applying Eq. (2), since M ≥ n, without any
conflict, for 0 ≤ t ≤ D and i = 1, 2, . . . , n, we can set

ρ′(t, i) =

{
⊥ if @m with ρ(t,m) = Oi,j
θi,j if ∃m with ρ(t,m) = Oi,j

(7)

Since all computation segments of τi are executed on pro-
cessor i, the schedule ρ′ is a partitioned schedule. All the
remaining analysis follows the proof of Theorem 1.

Theorem 3. There is a polynomial-time reduction which reduces
from an input instance of the decision version of the flow shop
scheduling problem FZ ||Cmax with Z flow shops to an input
instance of the MMSS schedulability problem that has Z mutex
locks with a flow-shop compatible access pattern. The conditions in
Theorems 1 and 2 for different scheduling paradigms with respect
to constraint of M remain the same.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

6

Proof. The proof is identical to the proofs of Theo-
rems 1 and 2. The additional condition is to access to the
Z mutex locks by following the index, starting from 1.

The above theorems show that the computational com-
plexity of the MMSS schedulability problem is almost in-
dependent from the number of processors (i.e., adding pro-
cessors may not be helpful) and the underlying scheduling
paradigm. The fundamental problem is the sequencing of
the critical sections.

3.3 Computational Complexity for Small M

We can now reach the computational complexity of the
MMSS schedulability problem when Z ≥ 2 for small M .
For completeness, we state the following lemma.

Lemma 1. The MMSS schedulability problem is in NP .

Proof. Since the feasibility of a given schedule for the MMSS
schedulability problem can be verified in polynomial-time,
it is in NP .

The following four theorems are based on the reductions
in Theorem 1 and Theorem 3. In general, even very special
cases are NP -complete in the strong sense.

Theorem 4. Under the semi-partitioned scheduling paradigm,
the MMSS schedulability problem is NP -complete in the strong
sense when Z = M = 2.

Proof. The job shop scheduling problem J2||Cmax with 2
shops is NP -complete in the strong sense [28]. Together
with Theorem 1, we conclude the theorem.

The MMSS schedulability problem is also difficult when
all computation segments have the same execution time.

Theorem 5. Under the semi-partitioned scheduling paradigm,
the MMSS schedulability problem is NP -complete in the strong
sense when Z = M = 3 and Ci,j = 1 for any computation
segment θi,j .

Proof. The job shop scheduling problem J3|pi,j = 1|Cmax

with unit execution time on 3 shops is NP -complete in the
strong sense [28]. Together with Theorem 1, we conclude the
theorem.

The following theorem shows that the MMSS schedu-
lability problem is also difficult when there are just three
tasks, three mutex locks, and three processors.

Theorem 6. The MMSS schedulability problem isNP -complete
in the strong sense when n = Z = M = 3.

Proof. The job shop scheduling problem J3|n = 3|Cmax

with 3 jobs (with multiple operations) on 3 shops is NP -
complete in the strong sense [39]. Together with Theorem 1,
we conclude the theorem for semi-partitioned scheduling
paradigm.

For the partitioned scheduling paradigm, since there are
exactly 3 tasks, 3 processors, and 3 mutex locks, the compu-
tational complexity remains the same, as a semi-partitioned
schedule can be mapped to a partitioned schedule.

Theorem 7. Under the semi-partitioned scheduling paradigm,
the MMSS schedulability problem for flow-shop compatible

access patterns is NP -complete in the strong sense when
Z = M = 3.

Proof. The flow shop scheduling problem F3||Cmax with 3
shops is NP -complete in the strong sense [17]. Together
with Theorem 3, we conclude the theorem.

3.4 Computational Complexity When M ≥ n

Chen et al. [11] showed that a special case of the MMSS
makespan problem is NP -hard in the strong sense when a
task has only one critical section and M is sufficiently large.
The following theorem shows that the MMSS schedulability
problem is NP -complete when there are only two critical
sections per task and the critical sections are with unit
execution time.

Theorem 8. The MMSS schedulability problem isNP -complete
in the strong sense when Z = 1, ηi ≥ 3 for every τi ∈ T,
Ci,j = 1 for every computation segment θi,j with λi,j = 1, and
M ≥ n.

Proof. The problem is in NP , since the feasibility of a given
schedule can be verified in polynomial-time. Similar to the
proof of Theorem 1, we show a polynomial-time reduction
from the master-slave scheduling problem with unit execu-
tion time on the master [44]. Assume a given input instance
with n jobs of the master-slave scheduling problem:
• We assume a sufficient number of slaves, but only one

master that can be modeled as a uniprocessor.
• A job i has a chain of three sub-jobs, in which the first

and third sub-jobs have to be executed on the master
and the second sub-job has to be executed on a slave.

• The processing time of the first and third sub-jobs of a
job i is 1. The processing time of the second sub-job of
a job i is Oi > 0.

The decision version of the master-slave scheduling prob-
lem is to decide whether there is a schedule whose
makespan is no more than a given target D, which is
NP -complete in the strong sense [44]. The master-slave
scheduling problem is equivalent to the uniprocessor self-
suspension problem with two computation segments and
one suspension interval.
The polynomial-time reduction to the MMSS schedulability
problem is as follows:
• There are M ≥ n processors.
• There is one mutex lock.
• For a job i of the input instance of the master-slave

scheduling problem, we create a task τi, which is com-
posed of three computation segments. The execution
time Ci,1 = Ci,3 and Ci,2 = Oi. Computation segments
θi,1 and θi,3 are critical sections guarded by the only
mutex lock. Computation segment θi,2 is a non-critical
section.

• The deadline of the tasks is D and the period is T = D.
It is not difficult to prove that a feasible schedule ρ for
the original input of the master-slave scheduling problem
exists if and only if there exists a feasible schedule ρ′ for the
reduced input of the MMSS schedulability problem. Details
are omitted due to space limitation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

7

4 THE DGA BASED ON JOB/FLOW SHOP

In this section, we detail the DGA for tasks with multiple
critical sections, based on job shop scheduling to construct
a dependency graph.
• In the first step, we construct a directed acyclic graph
G = (V,E). For each sub-job θi,j of task τi in
T, we create a vertex in V . The sub-job θi,j is a
predecessor of θi,j+1 for j = 1, 2, . . . , ηi − 1. Sup-
pose that Θz is the set of the computation seg-
ments that are critical sections guarded by mutex lock
z, i.e., Θz ← {θi,j | λi,j = 1 and σi,j = z}. For each
z = 1, 2, . . . , Z , the subgraph of the computation seg-
ments in Θz is a directed chain, which represents the
total execution order of these computation segments.

• In the second step, we construct a schedule of G on
M processors either globally or partitioned, either pre-
emptive or non-preemptive.

For a directed acyclic graph G, a critical path of G is a
longest path of G, and its length is denoted by len(G). We
now explain how to reduce from an input instance IMS of
the MMSS makespan problem to an input instance IJS of
the job shop scheduling problem JZ+n||Cmax.
• We create Z + n shops:

– Shop z ∈ {1, 2, . . . , Z} is exclusively used to execute
critical sections guarded by mutex lock z. That is,
only critical sections θi,j with λi,j = 1 and σi,j = z
(i.e., θi,j ∈ Θz) can be executed on shop z.

– Shop Z + i is exclusively used to execute non-critical
sections of task τi. That is, only non-critical sections
θi,j with λi,j = 0 can be executed on shop Z + i.

• The operation of each computation segment θi,j is
transformed to the corresponding shop, and the pro-
cessing time is the same as the segment’s execution
time, i.e., Ci,j .

Suppose that ρJS is a feasible job shop schedule for IJS .
Since ρJS is non-preemptive, the operations on a shop are
executed sequentially in ρJS . The construction of the de-
pendency graph G sets the precedence constraints of Θz by
following the total order of the execution of the operations
on shop z, i.e., the shop dedicated for Θz in ρJS .

Once the dependency graph G is constructed, a schedule
ρMS of the original input instance IMS can be generated by
applying any scheduling algorithms to schedule G, as al-
ready detailed in [11], [36]. Specifically, for semi-partitioned
scheduling, the LIST-EDF in [36] based on classical list
scheduling by Graham [19] can be applied, i.e., whenever
a processor idles and at least one sub-job is eligible, the
sub-job with the earliest deadline starts its execution on the
processor. Additionally, its partitioned extension in [37] (P-
EDF) can be applied to generate the partitioned schedule.

We assume each computation segment/sub-task exe-
cutes exactly its WCET for all the releases, i.e., early comple-
tion is forbidden, thus the schedule generated for one hyper-
period is static and repeated periodically. Accordingly, an
exact schedulability test is performed by simply evaluating
the LIST-EDF or P-EDF schedule over one hyper-period
to check whether there is any deadline miss. Since the
schedule is static and repeated periodically, there is no
dynamics that can lead to the multiprocessor anomalies
pointed out by Graham [19]. To demonstrate the work flow

of our approach, we provide an illustrative example in the
supplemental material.

4.1 Properties of Our Approach
We now prove the equivalence of a schedule of IJS and a
directed acyclic graph G for IMS .

Lemma 2. Suppose that there is a directed acyclic graph G for
IMS whose critical path length is len(G). There is a job shop
schedule for IJS whose makespan is len(G).

Proof. This lemma is proved by constructing a job shop
schedule ρJS for IJS , in which the makespan of ρJS is
len(G). Suppose that the longest path ended at a vertex θi,j
in V in the directed acyclic graph G is Li,j . There are two
cases to schedule θi,j in ρJS :
• If θi,j is a non-critical section, the schedule ρJS sched-

ules the operation on shop i + Z from time Li,j − Ci,j
to Li,j .

• If θi,j is a critical section guarded by mutex lock z, the
schedule ρJS schedules the operation on shop z from
time Li,j − Ci,j to Li,j .

The above schedule has a makespan of len(G) by con-
struction. The only thing that has to be proved is that the
schedule is a feasible job shop schedule for IJS .

Suppose for contradiction that the schedule ρJS is not a
feasible job shop schedule for IJS . This is only possible if
the schedule ρJS has a conflicting decision to schedule two
operations at the same time t on a shop z. There are two
cases:

1) z is an exclusively reserved shop for the non-critical
sections of a task. This contradicts to the definition of
G since the non-critical sections of task τi form a total
order in graph G.

2) z is a shop for the critical sections guarded by the mutex
lock z. This contradicts to the definition of G since the
critical sections in Θz form a total order in graph G.

In both cases, we reach the contradiction. Therefore, IJS is
a feasible job shop schedule with a makespan of len(G).

Lemma 3. Suppose that there is a job shop schedule for IJS

whose makespan is ∆. Then, there is a directed acyclic graph G
for IMS whose critical path length is at most ∆.

Proof. This lemma is proved by constructing a graph G for
I , in which the critical path length of G is at most ∆. By
the definition of G, the sub-job θi,j is a predecessor of θi,j+1

for j = 1, 2, . . . , ηi − 1 for every task τi. For the sub-jobs
in Θz , we define their total order and form a chain in G
by following the execution order on shop z in the given
schedule ρJS for IJS . Such a graph G must be acyclic;
otherwise, the schedule ρJS is not a valid job shop schedule
for IJS .

We now prove that the critical path length len(G) of G is
no more than ∆. Suppose for contradiction that len(G) > ∆.
This critical path of G defines a total order of the execution
of the computation segments in the critical path, which
follows exactly the total order of the operations of a job and
a shop in ρJS . Therefore, this contradicts to the fact that the
makespan of schedule ρJS for IJS is ∆.

Based on Lemmas 2 and 3, we get the following theorem:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

8

Theorem 9. An a-approximation algorithm for the job shop
scheduling problem JZ+n||Cmax can be used to construct a
dependency graph G with len(G) ≤ a × len(G∗), where G∗

is a dependency graph that has the shortest critical path length for
the input instance IMS of the MMSS makespan problem.

Proof. Suppose that ∆∗ is the optimal makespan for IJS .
By Lemma 2, we know that ∆∗ ≤ len(G∗). By Lemma 3,
we know that ∆∗ ≥ len(G∗). Therefore, ∆∗ = len(G∗).
Suppose that the algorithm derives a solution for IJS with a
makespan ∆. By the a-approximation for IJS and Lemma 3,
we know ∆ ≤ a × ∆∗. Therefore, by Lemma 3 and above
discussions, len(G) ≤ ∆ ≤ a∆∗ = a× len(G∗).

Lemma 4. Let G∗ be defined as in Theorem 9. The optimal
makespan for the input instance IMS of the MMSS makespan
problem is at least

max

{∑
τi∈T

Ci
M
, len(G∗)

}
(8)

Proof. The lower bound
∑
τi∈T

Ci

M is due to the pigeon hole
principle. The lower bound len(G∗) is due to the definition
with an infinite number of processors.

Theorem 10. Applying list scheduling for the dependency graph
G with len(G) ≤ a× len(G∗) results in a schedule with an ap-
proximation ratio of a+1 for the MMSS makespan problem under
semi-partitioned scheduling, where G∗ is defined in Theorem 9.

Proof. According to Theorem 1 and Section 4 in [19], by
applying list scheduling, the makespan of IMS for the
MMSS makespan problem is at most

len(G) +
∑
τi∈T

Ci
M
≤ a× len(G∗) +

∑
τi∈T

Ci
M

≤ (a+ 1)×max

∑
τi∈T

Ci
M
, len(G∗)

The resulting schedule is a semi-partitioned schedule since

two computation segments of a task can be executed on
different processors. By Lemma 4, we conclude the theorem.

Since the 1950s [10], [27], job/flow shop scheduling
problems have been extensively studied. Although the prob-
lems are NP -complete in the strong sense (even for very
restrictive cases), algorithms with different properties have
been reported in the literature. If time complexity is not a
major concern, applying constraint programming as well
as mixed integer linear programming (MILP) or branch-
and-bound heuristics can derive optimal solutions for the
job shop scheduling problem. In such a case, based on
Theorem 10, our DGA has an approximation ratio of 2 for
the MMSS makespan problem.

4.2 Remarks
At first glance, it may seem impractical to reduce the MMSS
makespan problem to another very challenging problem,
i.e., job shop scheduling, in the first step of our DGA algo-
rithms. However, an advantage of considering the job shop
scheduling problem is that it has been extensively studied
in the literature, related results can directly be applied,

and commercial tools, like the Google OR-Tools 3, can be
utilized, as we did in our evaluation. In addition, due to
Lemma 2, constructing a good dependency graph implies a
good schedule for IJS .

The last n job shops, i.e., shops Z + 1, Z + 2, . . . , Z + n,
in IJS , are in fact created just to match the original job
shop scheduling problem. From the literature of flow and
job shop scheduling, we know that these additional n job
shops can be removed by introducing delay (li,j in Sec. 2.3).
If the first computation segment θi,1 of task τi is a non-
critical section, this implies a non-zero release time ri of
task τi in IJS .

In our Google OR-Tools implementation for solving IJS ,
the no overlap constraint has to be taken into consideration
for both machine and job perspectives. For each machine,
it prevents jobs assigned on the same machine from over-
lapping in time. For each job, it prevents sub-jobs for the
same job from overlapping in time. The first constraint can
be achieved by applying the AddNoOverlap method, by
default supported in Google OR-Tools, for each machine.
For the second constraint, instead of creating n + Z job
shops, we utilize the above concept by creating only Z job
shops and adding proper delays between the operations.
We configure the start time (denoted as θi,j .start) of a
computation segment based on the end time (denoted as
θi,j .end) of an earlier computation segment. For notational
brevity, we assign θi,1.start ≥ 0 and θi,0.end = 0. For any
j ≥ 2 with λi,j = 1:{

θi,j .start ≥ θi,j−1.end if λi,j−1 is 1

θi,j .start ≥ θi,j−2.end+ Ci,j−1 if λi,j−1 is 0
(9)

In other words, if θi,j−1 is a non-critical section, the execu-
tion time Ci,j−1 is added directly to the end (finishing) time
of θi,j−2; otherwise θi,j is started after the end time of θi,j−1.

Hence, a proper job shop scheduling problem for IJS is
JZ |rj , lj |Cmax, i.e., scheduling of jobs with release time and
delays between operations on Z shops. An a-approximation
algorithm for the problem JZ |rj , lj |Cmax can be used to
construct a dependency graph. This problem is not widely
studied and only few results can be found in the literature.

For a task system with a flow-shop compatible access pat-
tern, i.e., the Z mutex locks have a pre-defined total order,
the instance IJS is in fact a flow shop problem. For a special
case with three computation segments per task in which the
second segment is a non-critical section, and the first and
the third segments are critical sections of mutex locks 1 and
2, respectively, the constructed input IJS is a two-stage flow
shop problem with delays, i.e., F2|lj |Cmax. For the problem
F2|lj |Cmax, several polynomial-time approximation algo-
rithms are known: Karuno and Nagamochi [24] developed
a 11

6 -approximation, Ageev [1] developed a 1.5 approxima-
tion for a special case when Ci,1 = Ci,3 for every task τi,
and Zhang and van de Velde [45] proposed polynomial-time
approximation schemes (PTASes), i.e., (1+ε)-approximation
for any ε > 0.

Specifically, Zhang and van de Velde [45] presented
PTASes for different settings of the job/flow shop schedul-
ing problems in [45]. For any of such scenarios, the approxi-

3. https://developers.google.com/optimization/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

9

mation ratio of DGA is at most 2+ε for any ε > 0, according
to Theorem 10.

4.3 Extension to Periodic Tasks
The treatment used in [36] to construct dependency graphs
can also be applied here. That is, unroll the jobs of all the
tasks in one hyper-period and then construct a dependency
graph of these jobs. Suppose that the hyper-period H of a
task set is the least common multiple (LCM) of the periods
of the all the tasks in this set. For each task τi that requests
(at least) one resource, we create H/Ti jobs of task τi. For
the `-th job of task τi, we set its release time to (`− 1)Ti and
its absolute deadline must be no later than (` − 1)Ti + Di.
Since the jobs for one task should not have any execution
overlap with each other, we only need one dedicated shop
for them. Therefore, there are two modifications of the job
shop problem scheduling considered in Sec. 4:
• The release time constraint is added for each job.
• Instead of optimizing the makespan, the objective is to

minimize the maximum lateness.
And now the studied problem becomes JZ+n|rj , li,j |Lmax.

Afterwards, a dependency graph for all the jobs in one
hyper-period is generated by solving the aforementioned
flow/job shop scheduling problem. In the end, the sched-
ules are generated offline by applying LIST-EDF or P-EDF,
similar to fame-based task systems. And the generated
schedules will be repeated in the upcoming hyper-periods.

Please note that such an extension can be applied to
any periodic real-time task system, with the space cost of
unrolling all the jobs, and the computation cost of increasing
number of considered jobs to the number of jobs in one
hyper-period.

5 IMPLEMENTATION AND OVERHEADS

In this section, we present details on how we imple-
mented the dependency graph approach in LITMUSRT to
support multiple critical sections per task. Afterwards, the
implementation overheads are compared with the Flexible
Multiprocessor Locking Protocol (FMLP) [4] provided by
LITMUSRT for both partitioned and global scheduling.

5.1 Implementation Details
When implementing our approach in LITMUSRT, we can
either apply the table-driven scheduling that LITMUSRT

provides, or implement a new binary semaphore which
enforces the execution order of critical sections that access
the same resource, since this order is defined in advance
by the dependency graph. A static scheduling table can be
generated over one hyper-period and be repeated periodi-
cally in a table-driven schedule. This table determines which
sub-job is executed on which processor for each time point
in the hyper-period. However, due to the large number
of sub-jobs in one hyper-period and possible migrations
among processors, the resulting table can be very large.
To avoid this problem, we decided to implement a new
binary semaphore that supports all the properties of our
new approach instead.

Since our approach is an extension of the DGA by
Chen et al. [11], and Shi et al. [36], our implementation is

based on the source code the authors provided online [35],
i.e., it is implemented under the plug-in Partitioned EDF
with synchronization support (PSN-EDF), called P-DGA-JS,
and the plug-in Global EDF with synchronization support
(GSN-EDF), denoted G-DGA-JS.

The EDF feature is guaranteed by the original design
of these two plug-ins. Therefore, we only need to provide
the relative deadlines for all the sub-jobs of each task, and
LITMUSRT will automatically update the absolute deadlines
accordingly during runtime.

In order to enforce the sub-jobs to follow the execution
order determined by the dependency graph, our implemen-
tation has to: 1) let the all the sub-jobs inside one job follow
the predefined order; 2) force all the sub-jobs that access the
same resource to follow the order determined by the graph.

The first order is ensured in LITMUSRT by default. The
task deploy tool rtspin provided by the user-space library
liblitmus defines the task structure, e.g., the execution order
of non-critical sections and critical sections within one task,
the related execution times, and the resource ID that each
critical section accesses. Moreover, the resource ID for each
critical section is parsed by rtspin, so the critical section
can find the correct semaphore to lock, and in our imple-
mentation we do not have to further consider addressing
the corresponding resources. Afterwards, rtspin emulates
the work load in a CPU according to the task set. A sub-
job can be released only when its predecessor (if any) has
finished its execution. Please note that for sub-jobs related
to critical sections the release time is not only defined
by its predecessor’s finish time inside the same job, but
also related to another predecessor that accesses the same
resource (if one exists).

A ticket system with a similar general concept to [35]
is applied to enforce the execution order. However, due to
different task structure which allows to support multiple
critical sections, compared to [35], additional parameters
had to be introduced and the structure of existed parameters
had to be revised. To be precise, we extended LITMUSRT

data structure rt_params that describes tasks, e.g., priority,
period, and execution time, by adding:
• total_jobs: an integer which defines the number of

jobs of the related task in one hyper-period.
• total_cs: an integer that defines the number of criti-

cal sections in this task.
• job_order: an array which defines the total order

of the sub-jobs related to critical sections that access
the same resource over one hyper-period. In addition,
the last Z elements record the total number of criti-
cal sections of the task set for each shared resource.
Thus, the length of the array is the number of critical
sections in one hyper-period plus the number of total
shared resources, i.e., len(job_order) = total_jobs
× total_cs + Z .

• current_cs: an integer that defines the index of the
current critical section of the task that is being executed.

• relative_ddls: an array which records the relative
deadlines for all sub-jobs of one task.

Furthermore, we implemented a new binary semaphore,
named as mdga_semaphore, to make sure the execution
order of all the sub-jobs that access the same resource
follows the order specified by the dependency graph.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

10

Algorithm 1 DGA with multi-critical sections implementa-
tion
Input: New coming task τi{job_no, total_jobs,

total_cs, current_cs, relative_ddls}, and
Requested semaphore sz{semaphore_owner,
serving_ticket, wait_queue};

Function get cs order():
1: current_jobno← τi.job_no mod τi.total_jobs;
2: index ← current_jobno × τi.total_cs +
current_cs;

3: cs_order← τi.job_order[index];

Function mdga lock():
4: if sz .semaphore_owner is NULL and
sz .serving_ticket equals to τi.cs_order then

5: sz .semaphore_owner← τi;
6: Update the deadline for τi;
7: τi starts the execution of its critical section;
8: else
9: Add τi to sz .wait_queue;

Function mdga unlock():
10: τi releases the semaphore lock;
11: Update the deadline for τi;
12: τi.current_cs++;
13: if τi.current_cs = total_cs then
14: Set τi.current_cs← 0;
15: sz .serving_ticket++;
16: if sz .serving_ticket = num_cs then
17: Set sz .serving_ticket← 0;
18: Next task τnext ← the head of the wait_queue (if exists);
19: if serving_ticket equals to τnext.cs_order then
20: sz .semaphore_owner← τnext;
21: τnext starts the execution of its critical section;
22: else
23: sz .semaphore_owner← NULL;
24: Add τnext to sz .wait_queue;

A semaphore has the following common components:
• litmus_lock protects the semaphore structure,
• semaphore_owner defines the current holder of the

semaphore, and
• wait_queue stores all jobs waiting for this semaphore.

A new parameter named serving_ticket is added to
control the non-work conserving access pattern of the crit-
ical sections, i.e., a job can only lock the semaphore and
start its critical section if it holds the ticket equals to the
corresponding serving_ticket.

The pseudo code in Algo. 1 shows three main functions
in our implementation: The function get_cs_order re-
turns the position of the sub-job in the execution order for
all the sub-jobs that access the same shared resource during
the run-time. In LITMUSRT, job_no counts the number of
jobs that one task releases. In order to find out the exact
position of this job in one hyper-period, we apply a modulo
operation on job_no and total_jobs. Since a job has
multiple critical section and the current_cs represents
the position of the critical section in a job, the index is
calculated by counting the number of previous jobs’ critical
sections and the current_cs in this job. After that, the
value of cs_order is searched from job_order based on
the obtained index. We provide an example with 5 tasks
which share two resources in the supplemental material.

The function mdga_lock is called in order to lock the
semaphore and get access to the corresponding resource. Af-
ter getting the correct position in the execution order in one
hyper-period by applying function get_cs_order(), the
semaphore’s ownership will be checked. If the semaphore is
occupied by another job at that moment, the new arriving
job will be added to the wait_queue directly; otherwise,
the semaphore’s current_serving_ticket and the job’s
cs_order are compared. If they are equal, the semaphore’s
owner will be set to that job, and the job will start its
critical section; otherwise, the job will be added to the
wait_queue as well. In our setting the wait_queue is
sorted by the jobs’ cs_order, i.e., the job with the smallest
cs_order is the head of the waiting queue. Hence, only
the head of the wait_queue has to be checked when the
current semaphore owner finishes its execution, rather than
checking the whole unsorted wait_queue.

The function mdga_unlock is called once a job has fin-
ished its critical section and tries to unlock the semaphore.
The task’s current_cs is added by one to point to the next
possible critical section in this job. If current_cs reaches to
the total_cs, which means all the critical sections in this
job have finished their execution, then the current_cs will
be reset to zero. Next, the semaphore’s serving_ticket is
increased by 1, i.e., it is ready to be obtained by the successor
in the dependency graph. If serving_ticket reaches the
total number of critical sections related to this resource in
one hyper-period, i.e., num_cs, the dependency graph is
traversed completely, i.e., all sub-jobs that access the related
resource finished their executions of the critical sections in
the current hyper-period, the parameter serving_ticket
is reset to 0 to start the next iteration. Please note, the
num_cs can be found in the last Z elements of job_order
according to the related resource id. After that, the first job
(if any) in the wait_queue, named as τnext is checked. If
τnext has the cs_order which equals to the semaphore’s
serving_ticket, the the semaphore’s owner is set as
τnext, and τnext can start the execution of its critical section.
Otherwise, the semaphore owner is set as NULL, and the
task τnext is put back to the corresponding wait_queue.

Additionally, each sub-job has its own modified deadline
accordingly, which means each job can have different dead-
lines when it is executing different segments. Therefore, we
have to take care of the deadline update during the imple-
mentation. When we deploy a task using rtspin to the
system, we deliver the relative deadline of its first sub-task
as the relative deadline of the whole task. Since no two con-
tinuous non-critical sections are allowed in the task model,
once a sub-job finishes its execution, either mdga_lock
or mdga_unlock is called. If mdga_lock is called, the
new critical section’s deadline is updated by searching the
relative_deadline; if mdga_lock is called, only the
finished critical section can update related job’s deadline
for its successor (if any), since τnext’s deadline has been
updated when it tries to lock the semaphore already.

The implementations for the global and partitioned
plug-ins are similar. However, due to the frequent preemp-
tion and/or interrupts in global scheduling, the preemption
has to be disabled during the executions of semaphore
related functions in order to protect the functionalities of
aforementioned functions.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

11

Max. (Avg.) in µs CXS RELEASE SCHED SCHED2 SEND-RESCHED

P-FMLP 29.51 (0.98) 17.68 (0.96) 31.85 (1.31) 28.77 (0.18) 66.33 (2.86)

P-DGA-JS 30.65 (1.25) 18.63 (1.02) 31.09 (1.64) 29.43 (0.19) 59.09 (21.06)

G-FMLP 30.51 (1.05) 48.53 (3.75) 45.99 (1.51) 29.62 (0.16) 72.26 (2.50)

G-DGA-JS 26.87 (0.94) 30.01 (2.19) 30.25 (1.02) 19.26 (0.14) 72.53 (21.50)

P-LIST-EDF 18.76 (0.90) 18.98 (1.06) 48.50 (1.33) 29.25 (0.16) 38.3 (1.61)

G-LIST-EDF 30.87 (1.79) 61.63 (12.06) 59.05 (4.46) 27.17 (0.25) 72.09 (20.77)

TABLE 2
Overheads of protocols in LITMUSRT.

5.2 Overheads Evaluations

We evaluated the overheads of our implementation in the
following platform: a cache-coherent SMP, consisting of
two 64-bit Intel Xeon Processor E5-2650Lv4, with 35 MB
cache and 64 GB main memory. The FMLP supported in
LITMUSRT was also evaluated for comparisons, including
P-FMLP for partitioned scheduling and G-FMLP for global
scheduling. These four protocols are evaluated using same
task sets where each task has multiple critical sections.

The overheads that we tracked are:
• CXS: context-switch overhead.
• RELEASE: time spent to enqueue a newly released job

into a ready queue.
• SCHED: time spent to make a scheduling decision, i.e.,

find the next job to be executed.
• SCHED2: time spent to perform post context switch

and management activities.
• SEND-RESCHED: inter-processor interrupt latency, in-

cluding migrations.
The overheads are reported in Table 2, which shows that

the overheads of our approach and those of P-FMLP, G-
FMLP are comparable. Furthermore, the implementations
provided in [36], called P-LIST-EDF and G-LIST-EDF, were
evaluated to examine the overhead and reported in Table 2.
The direct comparison between P-LIST-EDF and P-DGA-JS
(G-LIST-EDF and G-DGA-JS, respectively) is not possible
because they are designed for different scenarios, depending
on the number of critical sections per task. The reported
overheads in Table 2 for our approach are for task sets with
multiple critical sections per task, whilst the overheads for
P-LIST-EDF and G-LIST-EDF were for task sets with one
critical section per task. Regardless, they are in the same
order of magnitude.

6 EVALUATIONS

We evaluated the performance of the proposed approach by
applying numerical evaluations for both frame-based task
sets and periodic task sets, and measuring its overheads.

6.1 Evaluations Setup

We conducted evaluations on M = 4, 8, and 16 processors.
Based on M , we generated 100 synthetic task sets with 10M
tasks each, using the RandomFixedSum method [14]. We
set

∑
τi∈T Ui = M and enforced Ui ≤ 0.5 for each task

τi, where Ui = Ci

Ti
is the utilization of a task. The number

of shared resources (binary semaphores) Z was either 4, 8,
or 16. Each task τi accesses the available shared resource

randomly between 2 and 5 times, i.e.,
∑
λi,j ∈ [2, 5]. The

total length of the critical sections
∑
λi,j=1 Ci,j is a fraction

of the total execution time Ci of task τi, depended on
H ∈ {[5%− 10%], [10%− 40%], [40%− 50%]}. When con-
sidering shared resources in real-time systems, the utiliza-
tion of critical sections for each task in classical settings is
relatively low. However, with the increasing computation
demand in real-time systems (e.g., for machine learning
algorithms), adopted accelerators, like GPUs, behave like
classical shared resources (i.e., they are non-preemptive and
mutually exclusive), but have a relatively high utilization.
Hence, we chose possible settings of H that cover the
complete spectrum. The total length of critical sections and
non-critical sections are split into dedicated segments by
applying UUniFast [14] separately. For task τi, the number
of critical sections Numcs equals to

∑
λi,j , and the number

of non-critical sections Numncs = Numcs + 1. In the end,
the generated non-critical sections and critical sections are
combined in pairs, and the last segment is the last non-
critical section. We evaluated all resulting 27 combinations
of M , Z, and H .

The dependency graph is generated by applying:
1) The method in Sec. 4 with the objective to minimize

the makespan, denoted as JS. We utilized the constraint
programming approach provided in the Google OR-
Tools to solve the job shop scheduling problem,

2) The extension to multiple critical sections sketched
in [36], denoted as PRP. To check the feasibility of the
generated dependency graph, one simulated schedule
with respect to the dependency graph is generated.

We name these algorithms by combining:
1) JS/PRP: the two different dependency graph generation

methods.
2) LEDF/PEDF: to schedule the generated graph, we used

the LIST-EDF in [36] (LEDF) or partitioned EDF (PEDF)
in [37], and a worst-fit partitioning algorithm.

3) P/NP: preemptive or non-preemptive schedule for crit-
ical sections.

We also compare our approach with the following proto-
cols regarding their schedulability by applying the publicly
available tool SET-MRTS in [12] with the same naming:
• Resource Oriented Partitioned PCP (ROP-PCP) [22]:

Binds the resources on dedicated processors and sched-
ules tasks using semi-partitioned PCP.

• GS-MSRP [41]: THe Greedy Slacker (GS) partitioning
heuristic for spin-based locking protocol MSRP [16], us-
ing Audsley’s Optimal Priority Assignment [2] for pri-
ority assignment. (LP) analysis for global FP scheduling
using the FMLP [4].

• LP-GFP-PIP: LP-based global FP scheduling using the
Priority Inheritance Protocol (PIP) [13].

• LP-PFP-DPCP [6]: DPCP [33] with a Worst-Fit-
Decreasing (WFD) task assignment strategy [6]. The
analysis is based on a linear-programming (LP).

• LP-PFP-MPCP [6]: MPCP [32] with a Worst-Fit-
Decreasing (WFD) task assignment strategy as pro-
posed in [6]. The analysis is based on a LP.

• LP-GFP-FMLP [4]: FMLP [4] for global FP scheduling
with a LP analysis.

Note that a comparison to the original DGA in [11] is not possible,
since the approach in [11] is only applicable when there is one

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

12

0.0 0.2 0.4 0.6 0.8 1.0

PRP/JS

0.0

0.2

0.4

0.6

0.8

1.0
N

um
b

er
of

S
et

s

1.0 1.2 1.4 1.6 1.8
0

20
40
60
80

100
(a) M=8, Z=8,H=5%-10%,F=0

1.0 1.2 1.4 1.6 1.8
0

20
40
60
80

100
(b) M=8, Z=8,H=10%-40%,F=4

1.0 1.2 1.4 1.6 1.8
0

20
40
60
80

100
(c) M=8, Z=8,H=40%-50%,F=10

1.0 1.2 1.4 1.6 1.8
0

20
40
60
80

100
(d) M=4, Z=4,H=10%-40%,F=0

1.0 1.2 1.4 1.6 1.8
0

20
40
60
80

100
(e) M=8, Z=16,H=10%-40%,F=1

1.0 1.2 1.4 1.6 1.8
0

20
40
60
80

100
(f) M=16, Z=16,H=10%-40%,F=5

Fig. 1. Comparison of critical paths from the two graph generation
methods.

critical section per task. We also launched the evaluation of
the Priority Inheritance Protocol (PIP) [13] based on LP, but
we were not able to collect the complete results because val-
idating a task set took multiple hours. However, according
to [11], [36], [43], the PIP based on LP performs similar to
LP-GFP-FMLP.

6.2 Evaluation Results for Frame-Based Tasks
For frame-based task systems, we set T = D = 1 for all
the tasks, i.e., the execution time of each task is the same as
its utilization. We tracked the number of dependency graphs
calculated with PRP where the ratio of PRP/JS is less than
a certain factor. The results are shown in Fig. 1, where F
represents the number of infeasible dependency graph for
the PRP method due to cycle detection. The job-shop based
dependency graph generation method clearly outperform
the method extended from the original DGA. In addition,
the failure rate of the PRP is increasing when the length of
critical sections is increased, i.e., Fig. 1 (a), (b), and (c). The
other results show similar trends and are thus omitted due
to space limitation.

In our schedulability evaluation, we considered syn-
thetic task sets under the aforementioned settings, testing
the utilization level from 0 to 100% × M in steps of 5%.
The acceptance ratios of LP-PFP-DPCP and LP-PFP-MPCP
are zero for all configurations, even for utilization levels
≤ 20%×M . Hence, we omitted them in Fig. 2. Additionally,
considering the readability of the figure, we only show PRP-
LEDF-P, which has the best performance for the approaches
where dependency graphs are generated by PRP.

Fig. 2 shows that our approach outperforms the other
non-DGA based methods significantly for all evaluated set-
tings, and performs slightly better than the methods using
PRP. Fig. 1 and Fig. 2 also show that a better dependency

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%) / M

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(a) M=8, Z=8, H=5%-10%

JS-LEDF-P

JS-LEDF-NP

JS-PEDF-P

JS-PEDF-NP

PRP-LEDF-P

ROP-PCP

GS-MSRP

LP-GFP-FMLP

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(b) M=8, Z=8, H=10%-40%

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(c) M=8, Z=8, H=40%-50%

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(d) M=4, Z=4, H=10%-40%

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(e) M=8, Z=16, H=10%-40%

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(f) M=16, Z=16, H=10%-40%

Fig. 2. Schedulability of different approaches for frame-based task sets.

graph, i.e, a shorter critical path, not always results in better
schedulability in the second step of the DGA.

6.3 Evaluation Results for Periodic Tasks

We applied constraint programming to solve the job
shop problem JZ |rj , lj |Lmax and construct the dependency
graph. We extended the settings for frame-based task sets
in Sec. 6.2 to periodic task systems by choosing the period
Ti randomly from a set of semi-harmonic periods, i.e.,
Ti ∈ {1, 2, 5, 10}, which is a subset of the periods used
in automotive systems [20], [25]. We used a small range of
periods to generate reasonable task sets with high utilization
of the critical sections, which are otherwise by default not
schedulable.

Due to space limitation, only a subset of the results is
presented in Fig. 3. When the utilization of critical sections is
high, i.e., H = [40%− 50%] in Fig. 3 (c), or under medium
utilization when the number of processor and shared re-
sources are relative high, i.e., M = H = 16 in Fig. 3 (f), our
approaches outperforms the other methods significantly.
However, when the utilization of critical sections is low,
i.e., H = [5% − 10%] in Fig. 3 (a) and (b), ROP-PCP
outperformed the proposed approaches. The reason is that
the constraint programming of the problem JZ |rj , lj |Lmax

has the objective to minimize the maximum lateness, but
ignores the execution order of the sub-jobs that do not have
any influence on the optimal lateness, which may lead to
lower performance when the utilization of the non-critical
sections is high. When the utilization of critical section is
medium, i.e., H = [10%− 40%], and the number of proces-
sor is relative small i.e., M = {4, 8}, the newly proposed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

13

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%) / M

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(a) M=8, Z=8, H=5%-10%

JS-LEDF-P

JS-LEDF-NP

JS-PEDF-P

JS-PEDF-NP

PRP-LEDF-P

ROP-PCP

GS-MSRP

LP-GFP-FMLP

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(b) M=8, Z=8, H=10%-40%

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(c) M=8, Z=8, H=40%-50%

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(d) M=4, Z=4, H=10%-40%

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(e) M=8, Z=16, H=10%-40%

30 40 50 60 70 80 90 100
0

20

40

60

80

100
(f) M=16, Z=16, H=10%-40%

Fig. 3. Schedulability of different approaches for periodic task sets.

DGA-based methods and the extension PRP-LEDF-P both
outperform all the other methods significantly, but their
relation differs depending on the utilization value.

7 CONCLUSION AND FUTURE WORK

We have removed an important restriction, i.e., only one
critical section per task, of the recently developed depen-
dency graph approaches (DGA). Regarding the computa-
tional complexity, we show that the multiprocessor synchro-
nization problem is NP -complete even in very restrictive
scenarios, as detailed in Sec. 3. We propose a systematic
design flow based on the DGA by using existing algorithms
developed for job/flow shop scheduling and provide the
approximation ratio(s) for the derived makespan.

The evaluation results in Sec. 6.2 show that our approach
is very effective for frame-based real-time task systems.
Extensions to periodic task systems are presented in Sec. 4.3,
and the evaluation results show that our approach has
significant improvements, compared to existing protocols,
in most evaluated cases except light shared resource utiliza-
tion. This paper significantly improves the applicability of
the DGA by allowing arbitrary configurations of the number
of non-nested critical sections per task.

In this paper, we focus on the long-standing problem of
resource sharing of periodic tasks and on providing a good
solution for this most adopted real-time task model. As a
result, we achieved a solution that outperforms the methods
in the literature which can be applicable to this task model.
In the future, we plan to explore the possibility to apply
the dependency graph approach on sporadic task systems,
which do not have predefined arrival times of jobs.

ACKNOWLEDGMENTS

This paper is supported by DFG, as part of the Col-
laborative Research Center SFB876, project A1 and A3
(http://sfb876.tu-dortmund.de/). The authors thank Zewei
Chen and Maolin Yang for their tool SET-MRTS [12]
(Schedulability Experimental Tools for Multiprocessors Real
Time Systems) to evaluate the GS-MSRP, LP-GFP-FMLP, and
ROP-PCP in Fig. 2 and Fig. 3.

REFERENCES

[1] A. A. Ageev. A 3/2-approximation for the proportionate two-
machine flow shop scheduling with minimum delays. In Approx-
imation and Online Algorithms, 5th International Workshop, WAOA,
2007.

[2] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical Report YCS-164,
Department of Computer Science, University of York, 1991.

[3] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, 1991.

[4] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In RTCSA, 2007.

[5] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[6] B. Brandenburg. Improved analysis and evaluation of real-time
semaphore protocols for P-FP scheduling. In RTAS, 2013.

[7] B. B. Brandenburg and J. H. Anderson. Optimality results for
multiprocessor real-time locking. In RTSS, 2010.

[8] A. Burns and A. J. Wellings. A schedulability compatible multipro-
cessor resource sharing protocol - MrsP. In Euromicro Conference
on Real-Time Systems (ECRTS), pages 282–291, 2013.

[9] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. LITMUSRT : A testbed for empirically comparing real-
time multiprocessor schedulers. In RTSS, 2006.

[10] B. Chen, C. N. Potts, and G. J. Woeginger. A Review of Machine
Scheduling: Complexity, Algorithms and Approximability, pages 1493–
1641. Springer US, Boston, MA, 1998.

[11] J.-J. Chen, G. von der Brüggen, J. Shi, and N. Ueter. Dependency
graph approach for multiprocessor real-time synchronization. In
IEEE Real-Time Systems Symposium, RTSS, pages 434–446, 2018.

[12] Z. Chen. SET-MRTS: Schedulability Experimental Tools for
Multiprocessors Real Time Systems. https://github.com/
RTLAB-UESTC/SET-MRTS-public, 2018.

[13] A. Easwaran and B. Andersson. Resource sharing in global fixed-
priority preemptive multiprocessor scheduling. In RTSS, 2009.

[14] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the
synthesis of multiprocessor tasksets. In WATERS, pages 6–11, 2010.

[15] D. Faggioli, G. Lipari, and T. Cucinotta. The multiprocessor
bandwidth inheritance protocol. In Euromicro Conference on Real-
Time Systems (ECRTS), pages 90–99, 2010.

[16] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-
chip. In Real-Time Systems Symposium (RTSS), pages 73–83, 2001.

[17] M. R. Garey and D. S. Johnson. Computers and intractability: A guide
to the theory of NP-completeness. W. H. Freeman and Co., 1979.

[18] L. A. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk.
Better approximation guarantees for job-shop scheduling. SIAM J.
Discrete Math., 14(1):67–92, 2001.

[19] R. L. Graham. Bounds on multiprocessing timing anomalies.
SIAM Journal of Applied Mathematics, 17(2):416–429, 1969.

[20] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst.
Communication centric design in complex automotive embedded
systems. In 29th Euromicro Conference on Real-Time Systems, 2017.

[21] P.-C. Hsiu, D.-N. Lee, and T.-W. Kuo. Task synchronization
and allocation for many-core real-time systems. In International
Conference on Embedded Software, (EMSOFT), pages 79–88, 2011.

[22] W.-H. Huang, M. Yang, and J.-J. Chen. Resource-oriented par-
titioned scheduling in multiprocessor systems: How to partition
and how to share? In Real-Time Systems Symposium, 2016.

[23] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. Journal of ACM, 47(4):617–643, July 2000.

[24] Y. Karuno and H. Nagamochi. A better approximation for the
two-machine flowshop scheduling problem with time lags. In
Algorithms and Computation, 14th International Symposium, 2003.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3043742, IEEE
Transactions on Computers

14

[25] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmark for free. In WATERS, 2015.

[26] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task
scheduling, allocation and synchronization on multiprocessors. In
Real-Time Systems Symposium, pages 469–478, 2009.

[27] E. L. Lawler, J. K. Lenstra, A. H. R. Kan, and D. B.Shmoys. Se-
quencing and scheduling: Algorithms and complexity. Handbooks
in Operations Research and Management Science, 4:445–522, 1993.

[28] J. Lenstra and A. Rinnooy Kan. Computational complexity of
discrete optimization problems. Ann. Discrete Math., 4, 1979.

[29] M. Mastrolilli and O. Svensson. Hardness of approximating flow
and job shop scheduling problems. Journal of the ACM, 58(5):20:1–
20:32, Oct. 2011.

[30] F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time
systems on multiprocessors with shared resources. In Principles of
Distributed Systems - International Conference, pages 253–269, 2010.

[31] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical
scheduling via resource augmentation. In ACM Symposium on
Theory of Computing, pages 140–149, 1997.

[32] R. Rajkumar. Real-time synchronization protocols for shared
memory multiprocessors. In Proceedings of the 10th International
Conference on Distributed Computing Systems, pages 116 – 123, 1990.

[33] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In RTSS, 1988.

[34] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Trans.
Computers, 39(9):1175–1185, 1990.

[35] J. Shi. HDGA-LITMUS-RT. https://github.com/Strange369/
Dependency-Graph-Approach-for-Periodic-Tasks, 2019.

[36] J. Shi, N. Ueter, G. von der Brüggen, and J.-j. Chen. Multiprocessor
synchronization of periodic real-time tasks using dependency
graphs. In 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 279–292, 2019.

[37] J. Shi, N. Ueter, G. von der Brüggen, and J.-J. Chen. Partitioned
scheduling for dependency graphs in multiprocessor real-time
systems. In Proceedings of the 25th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications,
RTCSA, 2019.

[38] D. B. Shmoys, C. Stein, and J. Wein. Improved approximation
algorithms for shop scheduling problems. SIAM J. Comput.,
23(3):617–632, 1994.

[39] Y. Sotskov and N. Shakhlevich. NP-hardness of shop-scheduling
problems with three jobs. Discrete Appl. Math., 59(3):237–266, 1995.

[40] G. von der Brüggen, J.-J. Chen, W.-H. Huang, and M. Yang.
Release enforcement in resource-oriented partitioned scheduling
for multiprocessor systems. In RTNS, 2017.

[41] A. Wieder and B. Brandenburg. On spin locks in AUTOSAR:
blocking analysis of FIFO, unordered, and priority-ordered spin
locks. In RTSS, 2013.

[42] A. Wieder and B. B. Brandenburg. Efficient partitioning of spo-
radic real-time tasks with shared resources and spin locks. In
International Symposium on Industrial Embedded Systems, (SIES),
pages 49–58, 2013.

[43] M. Yang, A. Wieder, and B. B. Brandenburg. Global real-time
semaphore protocols: A survey, unified analysis, and comparison.
In Real-Time Systems Symposium (RTSS), pages 1–12, 2015.

[44] W. Yu, H. Hoogeveen, and J. K. Lenstra. Minimizing makespan in
a two-machine flow shop with delays and unit-time operations is
np-hard. J. Scheduling, 7(5):333–348, 2004.

[45] X. Zhang and S. L. van de Velde. Polynomial-time approximation
schemes for scheduling problems with time lags. J. Scheduling,
13(5):553–559, 2010.

Jian-Jia Chen is Professor at Department of
Informatics in TU Dortmund University in Ger-
many. He was Juniorprofessor at Department of
Informatics in Karlsruhe Institute of Technology
(KIT) in Germany from May 2010 to March 2014.
He received his Ph.D. degree from Department
of Computer Science and Information Engineer-
ing, National Taiwan University, Taiwan in 2006.
He received his B.S. degree from the Depart-
ment of Chemistry at National Taiwan University
2001. Between Jan. 2008 and April 2010, he

was a postdoc researcher at ETH Zurich, Switzerland. His research in-
terests include real-time systems, embedded systems, energy-efficient
scheduling, power-aware designs, temperature-aware scheduling, and
distributed computing. He received the European Research Council
(ERC) Consolidator Award in 2019. He has received more than 10 Best
Paper Awards and Outstanding Paper Awards and has been part of
Technical Committees in many international conferences.

Junjie Shi received his master degree in elec-
tronic technology and information technology
from TU Dortmund University, Germany, in 2017
and now is a PhD student at TU Dortmund Uni-
versity, supervised by Prof. Dr. Jian-Jia Chen.
His research interests are resource-sharing pro-
tocols for real-time systems, resource aware
scheduling for machine learning algorithms, and
computation offloading for real-time systems.

Georg von der Brüggen is a Postdoctoral Re-
searcher at the Max Planck Institute for Soft-
ware Systems in Kaiserslautern, Germany. He
received his PhD from TU Dortmund University,
Germany, in 2019 and his Diploma degree in
computer science from TU Dortmund University,
Germany, in 2013. His research interests are in
the area of embedded and real-time systems
with a focus on real-time scheduling. He par-
ticipated in the program committee of multiple
international conferences and workshops in the

area of real-time systems, like RTSS, RTCSA, and RTNS, and was the
program chair of the RTNS junior workshop JRWRTC in 2018.

Niklas Ueter received his master degree in com-
puter science from TU Dortmund University, Ger-
many, in 2018 and now is a PhD student at
TU Dortmund University, supervised by Prof. Dr.
Jian-Jia Chen. His research interests are in the
area of embedded and real-time systems with a
focus on real-time scheduling.

