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GapPredict – A Language Model for 
Resolving Gaps in Draft Genome Assemblies 

Eric Chen, Justin Chu, Jessica Zhang, René L. Warren, Inanc Birol  

Abstract— Short-read DNA sequencing instruments can yield over 1012 bases per run, typically composed of reads 150 bases long. 
Despite this high throughput, de novo assembly algorithms have difficulty reconstructing contiguous genome sequences using short 
reads due to both repetitive and difficult-to-sequence regions in these genomes. Some of the short read assembly challenges are 
mitigated by scaffolding assembled sequences using paired-end reads. However, unresolved sequences in these scaffolds appear 
as "gaps". Here, we introduce GapPredict – an implementation of a proof of concept that uses a character-level language model to 
predict unresolved nucleotides in scaffold gaps. We benchmarked GapPredict against the state-of-the-art gap-filling tool Sealer, and 
observed that the former can fill 65.6% of the sampled gaps that were left unfilled by the latter with high similarity to the reference 
genome, demonstrating the practical utility of deep learning approaches to the gap-filling problem in genome assembly. 

Index Terms—Biology and genomics, Draft genome, Language models, Deep learning, NLP, Neural networks  
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1 INTRODUCTION 
HE emergence of next-generation, high-throughput ge-
nome sequencing technologies has revolutionized life 

sciences. In next-generation sequencing, state-of-the-art in-
struments read genomes at high-depth, but yield relatively 
short (Illumina, ~150 bp) individual sequence segments 
“reads”, providing unprecedented volumes of sequencing 
data [1]. In order to reconstruct the input genomes, these 
short sequencing reads need to be assembled together and 
unbiased genome assemblies are performed de novo – with-
out the use of a reference genome [2]. De novo genome as-
sembly remains an open problem, with leading algorithms 
in the field usually yielding partial and incomplete ge-
nome sequences [3].  

De novo assembly algorithms identify partial and unam-
biguous read-to-read overlaps to merge and extend the 
reads into contiguous sequences, or contigs. Many tools, 
such as ABySS [4] and SPAdes [5], are designed to perform 
de novo assembly on a set of short paired-end reads. Typi-
cally, paired-end reads are short sequences (< 250 bp) gen-
erated from the two ends of a DNA fragment several hun-
dred bases in length. 

For complex genomes such as the human genome, alt-
hough de novo assemblers have successfully produced 
draft genome assemblies, they are incomplete [4]. Often, 
these de novo assemblies contain many gaps, which are re-
gions of unknown nucleotide sequence [3], [4]. De novo as-
semblers generate gaps during the process of scaffolding, 
where flanking sequences are inferred to follow each other. 
Still, precise sequence content between the flanking 

regions may remain undetermined. Gaps are caused by 
factors such as local depressions in the read coverage 
depth resulting in missed read-to-read overlaps and are of-
ten also caused by the inability of short reads to resolve re-
petitive sequences in these regions [6]. Filling gaps in de 
novo assemblies improves the quality of draft genomes, 
which has implications for downstream analyses such as 
structural variation identification [7], [8], [9], [10] and gene 
annotation [6].    

Gap-filling is a well-studied problem, and there are es-
tablished tools, such as Sealer [6] and GAPPadder [11], that 
provide solutions, albeit with varied performance, which 
are influenced by many of the intrinsic factors noted above 
and limitations associated with their implementation. For 
example, Sealer is reported to fill 50.8% of about 240,000 
gaps in a human genome assembly, and 13.8% of about 3 
million gaps in a white spruce genome assembly draft [6]. 
Gap-filling tools tend to use greedy algorithms to solve the 
gap-filling problem [6], [11]. Greedy algorithms are limited 
by their rigid heuristics, and may be unable to fully exploit 
all the information contained in short read sequencing 
data. As a result, these state-of-the-art tools still leave 
many gaps unfilled during assembly of complex genomes. 
To better exploit short read data, we investigated a differ-
ent paradigm to the gap-filling problem, using a deep 
learning approach. 

Deep learning is the use of neural networks – data-
driven, tunable functions – to allow computers to extract 
features from a dataset and make predictions on similar 
data [12]. Deep learning has already seen successful appli-
cation in computational biology, especially in sequence 
classification tasks [13], [14], [15], [16]. However, few ap-
plications of deep learning in computational biology seem 
to exist for sequence prediction. One such application, 
HELEN [17], uses a single recurrent neural network 
trained on read-to-assembly alignment summary statistics 
obtained from MarginPolish [17] to fix base assembly er-
rors in long read assembly drafts. 

The gap-filling problem can be framed as a sequence 
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prediction problem, as the sequence preceding the gap 
may provide sufficient context to predict the gap sequence 
itself. We note that the gap-filling problem typically uti-
lizes large volumes of data to represent the sequence con-
tent of gaps - an ideal condition to leverage deep learning 
approaches [12]. 

Our objective with this study is to assess the suitability 
of supervised deep learning algorithms for the gap-filling 
problem, with respect to how accurately gaps are filled, 
and establish a baseline accuracy. To explore this para-
digm, we introduce GapPredict, a proof of concept charac-
ter-level language model for filling gaps in draft genome 
assemblies. Character level language models predict the 
most likely character from a corpus of characters after re-
ceiving a sequence of characters from that corpus as con-
text [18].  

In this study, we benchmarked the gap-filling perfor-
mance of GapPredict against Sealer [6] and GAPPadder 
[11] – two scalable, heuristics-based gap-filling tools. We 
observed that GapPredict compares favorably to both 
Sealer and GAPPadder with respect to the quality of filled 
gaps, but could not scale to efficiency for a genome-wide 
application. This demonstrates that deep learning may be 
a viable approach to at least complement the gap-filling 
task in genome assembly.  

2 IMPLEMENTATION 
2.1 Overview 

GapPredict takes two files as input – a FASTA file con-
taining the two sequences flanking a given gap (henceforth 
referred to as flanks or flanking sequences), and a FASTQ 
file containing paired-end reads mapping to the flanks of 
the gap. Note that we imposed no constraints on input 
flank length, gap length, or read length. The reads and 
their reverse-complements are used to train a language 
model. Provided that the gap is shorter than the fragment 
length of the reads, the reads in the FASTQ file collectively 

span both the gap flanks and the gap completely. Thus, af-
ter training on the reads, GapPredict should have sufficient 
data to fill the gap in either the forward or reverse-comple-
ment direction if given a flank as context. On the other 
hand, for gaps noticeably longer than the sequence frag-
ment length, GapPredict is not expected to make accurate 
predictions. 

Following training, GapPredict uses its language model 
to recursively predict the sequence in a given gap using 
one of the flank sequences as its initial context. Both the 
forward and reverse-complement of the gap can be pre-
dicted by GapPredict, as the model may predict one direc-
tion better than the other (Fig. 1).  

2.2 Language Model Architecture  
We implemented the GapPredict model using the Keras 

framework (v2.2.4; Chollet F; [https://github.com/keras-
team/keras]) and Tensorflow [19]. The GapPredict model ar-
chitecture consists of three sequential layers (Fig. S1). First, 
each base in the input sequence, represented as a one-hot 
vector, is encoded as a word vector by an embedding layer. 
Next, the resulting sequence of word vectors is fed into a 
long short-term memory (LSTM). An LSTM was chosen as 
this architecture has been shown to offer good perfor-
mance on tasks involving long sequences [20], [21], which 
we consider gap-filling to be. Finally, the LSTM state is fed 
into a fully connected layer of neurons (a “dense layer” 
[19]). The output of this layer is a vector of length 4, which 
is normalized by the softmax function. Each value in this 
output vector can be interpreted as the probability that the 
next base is one of the four corresponding deoxyribonucle-
otides (A, C, G, T). We optimized this model using Adam 
[22], which is known to be a good out-of-the-box function. 
Our loss function was categorical cross-entropy, as each it-
eration of our sequence prediction algorithm is a multi-
class classification task. 

Fig. 1. Overview of the GapPredict training and prediction process. During training (left panel), reads mapping to the flanks of a 
gap are used to train a model capable of predicting the next base given an arbitrarily long input sequence. During prediction (right 
panel), one of the flanks of a gap (in this case, the left flank) is fed into the model to predict the first base of the gap, providing more 
context for the model to predict subsequent bases. Notice that if the gap is sufficiently small, paired-end reads aligning to the flanks 
should cover the entire gap when the coverage depth is high enough. 
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2.3 Language Model Training  
The training protocol for the GapPredict language 

model follows a four-step cycle. At each training iteration, 
we first randomly sample a batch of reads with replace-
ment (Fig. S2). Next, we randomly choose a length ! be-
tween !"#$ and !%&'%, two hyperparameters, and extract a 
random ! + 1-mer from each read in the batch (Fig. S3). We 
then compute the categorical cross-entropy loss for pre-
dicting the ! + 1st base, given the first ! bases and adjusts 
the model parameters accordingly (Fig. S4). 

At the end of every epoch, to inform early stopping, we 
compute the validation loss as follows. For a given flank of 
length *, we take the first + bases (for all +	 ∈ [!"#$, * − 1]) 
and compute the categorical cross-entropy loss for predict-
ing the + + 1st base given the first + bases (Fig. S5). In es-
sence, + increases iteratively from !"#$ to * − 1. The vali-
dation loss is the sum of the loss for predicting the bases of 
every flank divided by the sum of the flank lengths.  

Our validation loss metric measures a model’s ability to 
predict each flank and its reverse-complement. We ration-
alized that if our model was capable of correctly predicting 
the next base along each flank and on both DNA strands, 
then it is likely to have encoded information to predict the 
gap as well.  

2.4 Gap Sequence Prediction  
After training the model for a given gap, we predict the 

nucleotide sequence of the associated gap. Each gap is pre-
dicted with beam search using both the flanking sequence 
in the forward direction and the flanking sequence in the 
reverse-complement direction [23] (Fig. S6). 

As described above, each base prediction has an associ-
ated probability score for how likely the next base is. Thus, 
taking the log-sum of these probabilities gives us a metric 
for how confident our model is for the entire sequence it 
outputs. Beam search provides a scalable and robust, albeit 
greedy, method of searching for the output sequence with 
minimal magnitude of log-sum probability.  
Availability: Source code is available at: 
 https://github.com/bcgsc/GapPredict/releases/tag/v1.0b. 

3 METHODS 
Refer to Fig. S7 for an overview of our pipeline. 

3.1 Gap Data Acquisition 
We used the de novo assembler ABySS (abyss-pe v2.1.5) 

[4] to assemble the NA12878 human genome (Paired-end 
250bp sequencing data downloaded from 
https://basespace.illumina.com, flow cell H00DDBCXX), 
using a k-mer length of 144 bp. Then, we ran Sealer (abyss-
sealer v2.1.5) [6] on our draft assembly to close its gaps. 
From the Sealer output, we randomly selected 900 gaps 
that it filled (set 1) and 900 gaps that it failed to fill (set 2). 
In our tests, we required the gap flanks to be represented 
by 500 bp sequences, have unambiguous alignments in the 
reference human genome, and represent bona fide gaps as 
assessed with respect to the reference genome. The gap 
flank lengths were chosen to be 500 bp because in most 
cases, this length should be sufficient to uniquely identify 
the gap associated with each flank pair. After filtering out 
false gaps and gaps with shorter or ambiguously aligned 
flanks, we were left with 434 gaps in set 1 and 416 gaps in 
set 2.  

From each gap, we extracted 500 bp flanks from both 
sides to construct a FASTA file using a combination of in-
house scripts, SAMtools (v1.9) [24], and BEDtools (v2.27.1) 
[25]. Finally, we used the BioBloomMIMaker utility from 
BioBloom Tools (v2.3.2) [26] to construct a multi-index 
Bloom filter for each flank. Next, using BioBloomMICate-
gorizer [26] we built a FASTQ file by selecting any read, 
along with its mate, that mapped to a gap flank sequence. 
For each gap, this pair of FASTA and FASTQ files was the 
input used to run GapPredict. 

3.2 GapPredict Configurations 
In our tests, we initialized our GapPredict models with 

an embedding vector length of 128 and 512 LSTM units. 
Our models were trained over at most 1000 epochs with a 
batch size of 128. Early stopping was employed on valida-
tion loss with a patience of 200 epochs. !"#$ was set to 52 
bp and !%&'% was set to the length of the shortest read of 

Fig. 2. Comparison between query percent coverage and target percent correctness for gaps which Sealer was able to fill (set 1). 
(a) Passing predictions. (b) Failing predictions. Overall, 78.7% of 868 predictions passed. Colour bars show the density at each level of 
the contour plot. Kernel density estimation was plotted using default parameters. The figures were generated using Seaborn (v0.9.0). 
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each training batch.  
To predict the sequence of a given gap, our model se-

lected each of the 500 bp flanks as input and predicted the 
next 750 bases using a beam size of 64. Since gaps in our 
assembly were estimated to be no longer than 200 bp by 
ABySS, the prediction length of 750 bp was chosen as it ac-
counts for both the gap and most of the reciprocal flank. 
The beam size of 64 was chosen as we observed it provided 
a large enough search space. Both parameters can be freely 
reconfigured. We define the reciprocal flank as the flank on 
the opposite side of the input flank. 

3.3 Reference Gap Sequence Acquisition 
In order to quantify the performance of the tools we 

benchmarked – GapPredict, Sealer, and GAPPadder – we 
compared the sequences they predicted to sequences we 
extracted from the human genome reference HG38. To 
build this “ground truth” from HG38, for each gap in our 
benchmarks, we aligned its flanking sequences to HG38 
using BWA-MEM (v0.7.17) [27] and SAMtools [24]. We 
then used BEDtools bamtobed and BEDtools getfasta [25] 
to obtain the sequence of both the gap and its flanks in 
HG38. Sequences from HG38 were used solely to evaluate 
the performance of each gap-filling tool and were not used 
for the gap-filling process. 

3.4 GapPredict Output Validation 
Using Exonerate (v2.2.0) [28] we aligned GapPredict 

predictions to the reference gap sequence and 100 bp of the 
reference reciprocal flank. We evaluated these alignments 
with four metrics defined in Section 3.5: sequence percent 
identity, target sequence percent coverage, query sequence 
percent coverage, and sequence percent correctness, where 
“query” refers to GapPredict predictions and “target” re-
fers to the reference sequence for alignment. 

Of course, in a typical use case, one would not have a 
reference for filled gaps. Thus, we needed a heuristic for 
deciding if a gap is likely to be correctly filled (“pass”). We 
reasoned that an accurately predicted gap sequence is the 
most likely sequence context to yield an accurate predic-
tion of the reciprocal flank [29]. Since we know the se-
quence of both gap flanks, we define a prediction to be a 
“pass” if the first 100 bp of the reciprocal flank sequence 

aligns to GapPredict’s prediction for the gap with a se-
quence percent correctness over a threshold (default: 70%), 
and a “fail” otherwise. This sequence percent correctness 
may be used in place of a confidence score. 

The reciprocal flank alignment start position also deter-
mines the stop position of the gap itself. We can thus use 
the start of GapPredict’s prediction and the start of recip-
rocal flank alignments to extract gap sequences predicted 
by GapPredict. In addition, since GapPredict outputs one 
prediction for each of the two flanking sequences, we can 
use the heuristic that the prediction whose reciprocal flank 
aligns better is more likely to be accurate. 

Using Seaborn (v0.9.0; Waskom M et al.; 
[https://github.com/mwaskom/seaborn]), we compared 
target sequence percent correctness against query se-
quence percent coverage for each gap we predicted. We 
also determined the probability density for these two vari-
ables. 

3.5 Gap Prediction Validation Metrics 
Sequence percent identity is the percentage of matches 

in the alignment to the total number of aligned positions, 
including gaps, from a given sequence (definition L2 in 
[30]).  

Target sequence coverage is the quotient between the 
number of reference sequence bases aligned to the predic-
tion and the total reference sequence length. Query se-
quence coverage is the quotient between the number of ba-
ses from the prediction aligned to the reference sequence 
and the number of bases from the start of our predicted gap 
to the end of our predicted gap. Our predicted gap is de-
fined to end at the maximum reference base index among 
where the gap alignment ends and the reciprocal flank 
alignment begins. In essence, target sequence coverage 
provides a measure of how much of the reference sequence 
is covered by GapPredict’s prediction, whereas query se-
quence coverage provides a measure of how many bases 
predicted by GapPredict are actually related to the refer-
ence sequence.  

Lastly, sequence percent correctness is the product of se-
quence percent identity and sequence percent coverage. 
This metric was computed to aggregate sequence percent 
identity and sequence coverage.  

Fig. 3. Comparison between query percent coverage and target percent correctness for gaps which Sealer was not able to fill 
(set 2). (a) Passing predictions. (b) Failing predictions. Overall, 65.2% of 832 predictions passed. Colour bars show the density at 
each level of the contour plot. Kernel density estimation was plotted using default parameters. 
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The combination of target sequence correctness and 
query sequence coverage characterizes the fill status of 
gaps. For example, high target sequence correctness and 
high query sequence coverage indicates that GapPredict 
closely matched the reference gap in both sequence accu-
racy and completeness. On the other hand, high target se-
quence correctness but low query sequence coverage de-
notes that GapPredict’s gap closely aligns with that of the 
reference in accuracy but may be incomplete.  

3.6 Sealer Output Validation 
Although Sealer can be run on the whole NA12878 as-

sembly and associated read set, we ran Sealer on each gap 
from sets 1 and 2 individually using only the reads Gap-

Predict utilized as input for its gap predictions. This was 
done to confirm that using only reads mapping to the gap 
(to be consistent with GapPredict’s workflow), rather than 
all reads in the NA12878 dataset, had negligible effect on 
Sealer’s gap-filling performance.  

We looked at the target percent correctness of Sealer’s 
output gaps when compared to the reference, as reported 
by Exonerate [28]. This was done to benchmark the perfor-
mance of heuristic algorithms. Finally, we compared the 
target percent correctness of both GapPredict and Sealer 
for each gap we predicted, and determined the probability 
density for these two variables. 

3.7 GAPPadder Output Validation 
We ran GAPPadder (base version on 

https://github.com/simoncchu/GAPPadder commit 
a359750) [11] using the entire NA12878 assembly and 
reads, rather than on each gap from sets 1 and 2 individu-
ally. This is because GAPPadder searches for discordant 
reads [11], which would not be present for gaps taken in 
isolation. After GAPPadder filled all gaps it identified in 
the draft assembly, we used BWA-MEM [27] to map GAP-
Padder’s output to HG38 reference sequences for gaps in 
sets 1 and 2. We chose the best alignment when a gap filled 
by GAPPadder mapped ambiguously to the reference ge-
nome. 

Similar to Sealer, we looked at the target percent correct-
ness of GAPPadder’s output gaps when compared to the 
reference. We also compared the target percent correctness 

of GapPredict and GAPPadder’s outputs and determined 
the probability density for these two variables. Query cov-
erage was not computed for either Sealer or GAPPadder 
because the metric was expected to be high for both tools. 

3.8 QUAST Evaluation 
We ran the sequence quality assessment tool QUAST [3] 

(v5.0.2 -m 0 -t 8) separately on predicted sequence outputs 
from gaps closed in common between Sealer, GAPPadder, 
and GapPredict using HG38 gap sequences as a reference.  

4 RESULTS AND DISCUSSION 
4.1 GapPredict Output Validation 

Because GapPredict makes two predictions per gap, one 
in the forward and one in the reverse-complement direc-
tion, running the tool on 434 gaps in set 1 and 416 gaps in 
set 2 resulted in 868 and 832 predictions for the two sets, 
respectively. Regardless of how good the prediction is, 
GapPredict will always output a candidate sequence for 
each gap. Of these predictions, 78.7% in set 1 and 65.2% in 
set 2 were classified as a “pass”. In addition, for the 434 
gaps in set 1, 87.3% had at least one pass in the prediction 
pair and 70.0% had two passes. For the 416 gaps in set 2, 
78.4% had at least one pass in the prediction pair and 52.2% 
had two passes. The proportion of passes being lower in 
set 2 reinforces the notion that these gaps may be more 
challenging to fill.  

For gap predictions classified as a “pass” in both set 1 
(Fig. 2a) and set 2 (Fig. 3a), there was a significant number 
of predictions with high target percent correctness and 

query percent coverage (top right corner). Gap predictions 
classified as a “fail” in both set 1 (Fig. 2b) and set 2 (Fig. 
3b), on the other hand, formed two types of clusters – clus-
ters of high target percent correctness (right side), and clus-
ters of both low target percent correctness and low query 
percent coverage (bottom left corner). Set 2 also contained 
a third cluster at high target percent correctness and low 
query percent coverage. Metrics for target percent correct-
ness only are summarized in Fig. S8 and Table S1. 

Note that Fig. 2b and Fig. 3b both have multi-layered 
contours at the bottom left corner, despite the scatter plot 
being highly concentrated at this location. 56.8% of points 

Fig. 4. Target percent correctness for gaps in set 1 (filled, 
n=430) and set 2 (unfilled, n=13) that were filled by Sealer 
when run on each individual gap using only read pairs an-
chored to the flanks. From either set, gaps that Sealer did 
not fill are excluded from the figure. 

Fig. 5. Target percent correctness for gaps in set 1 (filled, 
n=425) and set 2 (unfilled, n=411) that were filled by GAP-
Padder when run using the full NA12878 draft assembly and 
all reads in the NA12878 dataset. From either set, gaps that 
GAPPadder did not fill are excluded from the figure. 
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for Fig. 2b and 54.3% of points for Fig. 3b are located at 
these corners. Because kernel density estimations provide 
a probability density for our scatter plot [31], the multi-lay-
ered contours reflect the high probability of gaps classified 
as a “fail” being predicted with target percent correctness 
and query percent coverage close to 0. 

When gap predictions are categorized as a “pass”, they 
tend to have high target percent correctness and high 
query percent coverage (Table S1). This demonstrates that 
models that manage to predict the reciprocal flank are also 
likely to predict the gap itself. Thus, our heuristic for good 
predictions is valuable for identifying low quality gap pre-
dictions. However, because it is possible that our models 
predict the gap correctly but the reciprocal flank incor-
rectly, we may miss some high-quality gap predictions. 
The clusters of “failed” predictions with high target per-
cent correctness and high query percent coverage in Fig. 2b 
and 3b illustrate this.  

4.2 Performance Against Other Tools 
Sealer’s ability to fill gaps did not particularly change 

when Sealer was executed on gaps using only reads map-
ping to the gap and its flanks, instead of all reads in the 
NA12878 dataset (Fig. 4). Rather than filling all 434 gaps 
from set 1 and none of the 416 gaps from set 2, as with the 
latter approach, Sealer filled 430 gaps (99.1%) from set 1 
and 13 gaps (3.1%) from set 2 with the former approach. 
Gaps filled by Sealer had over 90% target correctness (Fig. 
4). We think the few outliers with low target percent cor-
rectness may be due to low target percent coverage from 
abnormally large reference gap sequences. These errone-
ous gap sequences may have been due to differences be-
tween the HG38 consensus genome and the NA12878 ge-
nome, which resulted in the gap flanking sequences align-
ing incorrectly. 

GAPPadder filled 425 and 411 gaps from sets 1 and 2 
(97.9% and 98.8%), but with higher variance on target per-
cent correctness (Fig. 5). The difference in the number of 
gaps filled, particularly in set 2, and the difference in per-
cent correctness may be explained by GAPPadder using a 
different gap-filling algorithm than Sealer [6], [11]. 

However, the overall lower accuracy of set 2 gaps rein-
forces the notion that gaps in set 2 are more difficult to re-
solve. 

For each gap, we also compared the target percent cor-
rectness between the filled gap sequences from Sealer and 
GapPredict (Fig. 6), and from GAPPadder and GapPredict 
(Fig. 7). In both Figures 6 and 7, we assigned a target per-
cent correctness of 0% to gaps which Sealer or GAPPadder 
were unable to determine. We summarize the target per-
cent correctness for all tools in Table S1.  

We note that for gaps in set 1, there is a cluster at high 
target percent correctness for both GapPredict and Sealer, 
and a cluster at low target percent correctness for both tools 
(Fig. 6). For gaps in set 2, there is a cluster at low target 
percent correctness for both tools and a cluster at high tar-
get percent correctness for GapPredict only.  

From figure 7, we note that for both gaps in sets 1 and 2, 
there is a cluster at high target percent correctness for both 
GapPredict and GAPPadder, and a cluster at low target 
percent correctness for both tools. In addition, both figures 
show outlier gaps where one tool outperformed the other 
in percent correctness (Fig. 6a, Fig. 7a, Fig. 7b). 

Overall, for 78.9% of the 434 gaps that Sealer originally 
could fill (set 1) and 65.6% of the 416 gaps that Sealer orig-
inally could not fill (set 2), GapPredict produced at least 
one prediction with a target percent correctness of at least 
90%, a query percent coverage of at least 90%, and a classi-
fication of “pass”. Generally, we find the gap sequences 
predicted by GapPredict to be (~1.6 to 1.8x) less accurate 
compared to those resolved by Sealer and GAPPadder, 
with the latter two heuristic-based methods yielding se-
quences having less than 1% base error (Table S2). This is 
in contrast with the ~1.5% base error on those same predic-
tions generated with the former, machine-learning based 
method. This is perhaps not unexpected given the GapPre-
dict’s paradigm to resolving gap sequences. We expect the 
sequence accuracy to improve in the future, as machine 
learning algorithms and models improve.   

4.3 Model Performance Optimization 
With GapPredict, we demonstrate that a deep learning 

Fig. 6. Comparison between percent correctness for gaps filled by GapPredict and percent correctness for gaps that Sealer 
filled when run on each individual gap. (a) Percent correctness for gaps in set 1. (b) Percent correctness for gaps in set 2. Gaps 
that Sealer did not fill were assigned a percent correctness of 0%. Colour bars show the density at each level of the contour plot. Kernel 
density estimation was plotted using default parameters.  
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approach shows promise for de novo assembly gap predic-
tions. Our analyses showed that GapPredict could predict 
at least 60% of gap sequences with over 90% target percent 
correctness and query percent coverage.  

Some of GapPredict’s model hyperparameters, such as 
batch size and embedding vector length, were chosen 
without optimization. Other hyperparameters, such as the 
number of LSTM cells and the minimum and maximum 
training k-mer lengths were explored by comparing vali-
dation loss and validation accuracy between models 
trained with different values of these hyperparameters 
(data not shown). The GapPredict model architecture was 
based on a simple character-level language model [32]. 
Further tuning of hyperparameters and exploration of 
model architectures may produce a better performing 
model, but be more expensive to compute. We did not in-
vestigate the impact of such changes on model perfor-
mance, however.  

Lastly, within each training iteration (but not among 
every training iteration), the sequences GapPredict trains 
on are of uniform length. It is possible that allowing these 
sequences to have variable length could improve training, 
provided that the length is within the minimum and max-
imum length hyperparameters. This would prevent each 
iteration from being biased to a specific input length. 

4.4 Model Scalability 
We trained GapPredict models and filled gaps using 

these models on a system with two Xeon Silver 4116’s, 256 
GB RAM, and eight NVIDIA 1080Ti’s. Each model used a 
single GPU for training. GapPredict models take approxi-
mately three minutes to predict a gap sequence using beam 
search with a beam width of 64. In comparison, it takes ap-
proximately 50 minutes to train a model on a gap with 
about 500 reads mapping to its flanks. At most 10 GB of 
GPU RAM was used. Table S3 shows more detailed perfor-
mance metrics for the three tools used. Although we can 
parallelize model training by training different models on 
different GPUs, the lengthy model training time makes it 
difficult for GapPredict to scale to the large number of gaps 
typically present in the draft assembly of larger genomes.  

In order to improve runtime, we could employ a stricter 
patience. With our current patience of 200 epochs, model 

training often extends past 500 epochs for only a slight im-
provement in validation loss. We think that the robustness 
of beam search with a larger beam width can compensate 
for shorter training. In addition, we could begin training 
using weights from a pre-trained GapPredict model [33].  

One final improvement to our model may be to redesign 
it to train on the entire read set. Such a model could con-
sider any gap sequence from the source assembly as it en-
codes data from the entire assembly. This would improve 
model reusability as a single model could be used to pre-
dict any set of gaps for the assembly in parallel, similar in 
idea to HELEN [17]. In addition, this design would remove 
the need for obtaining read data for each gap individually, 
which takes several hours. 

5 CONCLUSION 
With GapPredict, we demonstrate that deep learning is 

applicable to the de novo genome assembly gap-filling 
problem. Character-level language models indeed seem 
capable of encoding the information of a gap sequence and 
its flanks solely by training models on sequence short read 
data, and use contextual sequencing information for pre-
dictions. Further, when such models manage to predict the 
sequence from the reverse DNA strand, they tend to pre-
dict the gap with good accuracy. This provides a simple 
way of filtering out potentially low-quality gap predic-
tions.  

Although GapPredict may scale poorly to the high vol-
ume of gaps in assemblies for large genomes (>100k gaps 
for >3Gbp genomes [6]), we think further improvements to 
speed it up and improve its prediction performance are 
possible. In addition, GapPredict was able to provide accu-
rate output (with respect to HG38) for both gaps that Sealer 
or GAPPadder could fill and gaps that those tools could 
not fill well or could not fill at all. Deep learning may there-
fore serve at least as a method to fill gaps that heuristic 
methods are unable to fill, rather than being employed as 
the first and foremost gap closing method. This may lessen 
the burden of running deep learning tools by decreasing 
the number of gaps that need to be predicted. In the future, 
deep learning algorithms may complement the current ar-
senal of gap prediction utilities. 

Fig. 7. Comparison between percent correctness for gaps filled by GapPredict and percent correctness for gaps filled by GAP-
Padder. (a) Percent correctness for gaps in set 1. (b) Percent correctness for gaps in set 2. Gaps that GAPPadder did not fill were 
assigned a percent correctness of 0%. Colour bars show the density at each level of the contour plot. Kernel density estimation was plotted 
using default parameters. 
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