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Abstract—The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the
power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging
services in smart grids. Addressing the growing demand from fast charging services is challenging. To overcome this challenge, in
this paper, we propose a new computational architecture combining energy trading and demand responses based on cloud computing
for managing virtual power plants (VPPs) in smart grids. In the proposed system, EVs can be charged at high charging rates without
affecting the operation of the power grid by purchasing energy through the energy trading platform in the cloud. In addition, users
with storage devices can sell energy surplus to the market. On the one hand, the energy trading platform can be regarded as an
internal market of the VPP that aims to maximize its revenue. The interest of the EV owners, on the other hand, is to minimize the cost
for charging. Therefore, we model the interactions between the EV owners and the VPP as a non-cooperative game. To search for the
Nash equilibrium (NE) of the game, we design an algorithm and then analyze its computational complexity and communication overhead.
We utilize real data from the California Independent System Operator (CAISO) to evaluate the performance of the proposed algorithm.
Our results illustrate that the users with only storage devices can obtain nearly 200% higher revenue on average by participating in the
proposed internal market. Moreover, users with only EVs can reduce their charging costs by nearly 50% in average. Users with both
EVs and storage devices can reduce the charging costs even further by approximately 120% where the users get profit by utilizing the
internal market.

Index Terms—virtual power plant, cloud energy trading, renewable energy, smart grid, electric vehicles.
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NOMENCLATURE

A. Sets and Indices
N1 Set of type-1 users.
N2 Set of type-2 users.
N3 Set of type-3 users.
Ut Set of type-2 and type-3 users in the internal

market at time t.
i Type-1 user index.
l EV user index.
j Area index.
Aj Set of users in area j.

B. Variables
M Total area number.
N Total number of users.
PGridl,t Charging EV l at time t with power from the

power grid.
PETl,t Charging EV l at time t with power from the

energy trading platform.
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ESTl,t Charging EV l at time t with energy from trad-
ing energy in the storage device with the VPP.

Pl,t Total power for charging EV l at time t.
wt Energy that the VPP purchases to charge storage

devices from the external market at time t.
Etotalt Total amount of energy that the VPP purchases

from the external market.
βi,t Portion of energy that the VPP will buy from

user i at time t.

C. Parameters
τ Duration of a time slot (hour).
T Number of time slots in the time window.
αl Time for user l (l ∈ N2 ∪ N3) participating in

the energy trading platform.
aETi,t Total amount of energy that user i sells to the

energy trading platform.
bETi,t Unit price of user i to sell unit of energy.
zi,t(zl,t) Energy level of storage device of user i (l ∈ N3)

at time t.
zV PPt Energy level of storage devices of the VPP at

time t.
aEVl,t Desired amount of energy that user l ∈ N2 ∪

N3 with EVs wants to receive from the energy
trading platform.

bEVl,t Desired price set by user l ∈ N2 ∪ N3 with EVs
to receive unit of energy from the energy trading
platform.
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sEVl,t Amount of energy that user l ∈ N3 with EVs
wants to trade with the VPP.

el,t Energy level of EV l at time t.
dl,t Energy demand of EV l at time t.
W Number of time slots with predictable informa-

tion.
Ebaset Base energy provided by the VPP.
Bt Base price of unit energy that EV users need to

pay to the VPP.
kt Electricity price in the external market at time t.
ut Price guaranteed by the government to sell en-

ergy surplus to the external market.
rt(gl,t) Renewable power generation of the VPP (user

l ∈ N3) at time t.
oj,t Energy obtained from the type-1 and the type-3

users in area j at time t.
Dl Surge price of user l.

D. Operators
| · | Cardinality of set.
|| · ||2 Two norm of a vector.
R+ Positive real number.

Other notations are defined in the text.

1 INTRODUCTION

Environmental benefits and economic incentives are two
key drivers behind the growing share of renewable energy
resources in the distribution grid. However, uncertainties
associated with renewable energy production, substantial
increase in the capacity of electric vehicles (EVs) in recent
years [1], and increasing interest in leveraging energy stor-
age devices introduce new challenges to reliable and stable
operations of the power grid, especially during peak hours
[2].

To overcome this challenge, several works have dis-
cussed the EV charging problem with renewable energy. In
[3], EVs were classified with different categories according
to their charging behaviors to receive different charging
rates in order to address the uncertainty associated with
renewable energy generation. In [4], a Markov decision
process (MDP) was utilized in smart grids to solve the EV
charging problem in a renewable-energy assisted charging
framework. The uncertainty associated with renewable en-
ergy generation was addressed for both power flow dis-
patch and charging management problems by the authors in
[5]. The charging management problem in a charging station
was formulated as a stochastic optimization problem in [6].
The authors in [7] designed an optimal charging strategy
using a stochastic game, considering the dynamic behavior
of EV owners that can lead to changing of charging param-
eters, e.g., energy demand or leaving time, during charging,
while also incorporating renewable energy resources for
charging. Fuzzy theory was utilized to jointly consider the
behaviors of EV owners and the behaviors of the charging
stations in [8].

The charging rates in [3]–[8] are limited because of the
use of alternating current (AC) chargers. The charging rate
of AC chargers is comparatively low, and therefore the
charging time for EVs is rather long. In the above studies,

EV owners were satisfied with the charging time because
it was assumed they charge EVs where they stay for a
long time during the day, e.g., home or workplace. Slow
charging is not practical if EV owners stay in a place for a
short time, e.g., rest stop or shopping center. Direct current
(DC) chargers, such as CHAdeMO and Tesla supercharger,
are designed to provide high charging rates for EV own-
ers. Moreover, the combined charging system (CCS) was
developed to extend the charging capability of traditional
AC chargers. Such solutions can significantly reduce the
charging time. The chargers require a high peak power for
a very short duration for fast charging service that poses
a technical challenge to the distribution system operator
(DSO). The problem of how to offer DC charging services
in smart grids without purchasing a very large amount
of power from the external energy market has not been
addressed in earlier work. In this paper, we propose a cloud-
based demand response mechanism for a VPP in smart
grids to incorporate such considerations and address the
related challenges. That is, the VPP has storage devices
and renewable energy production. Subsequently, the VPP
can operate an energy trading platform to form an internal
market that is deployed in the cloud. Users with storage
devices can sell energy surplus to the VPP through the
platform. At the same time, EV owners can purchase energy
using the platform, and then EVs can be charged with high
charging rates by utilizing energy from renewable energy
generation and storage devices of the VPP. The price in
the trading platform is lower than in the external market,
and therefore the consumption of charging EVs with energy
from the external market is reduced with internal demand
response management.

Previous studies related to demand response mainly use
electricity price signals as the main interaction parameter
between the power grid operators and the end users [9]–
[13]. For instance, in [9], the interactions were modeled
as a Stackelberg game to find the best strategies for both
the end users and the power grid operators. Strategies
for reduciung the peak energy consumption of the data
center were proposed in [14]–[16]. The uncertainty related
to renewable power generation was considered in [10]. The
privacy issues of the end users were incorporated into the
demand response management framework in [11], where
the authors proposed a reinforcement learning (RL) based
solution for scheduling the consumption of appliances in
the household and protect the privacy at the same time.
Recent breakthroughs in RL were further applied to sched-
ule the consumption of heating, ventilation, and air con-
ditioning (HVAC) system in the household and appliances
in the building to implement demand response in [12],
[13], respectively. Demand response combined with VPPs
to participate in the energy market was considered in [17]–
[19]. In [17], the theory of conditional value at risk was
introduced to address the uncertainty associated with re-
newable energy production. A multi-time-scale scheduling
strategy proposed in [18] was used to participate in the
energy market and implement demand response. A similar
problem as [18] was studied in [19]. An iterative algorithm
was designed in [19] to solve the formulated problem by
separating the original problem into a master problem and
a subproblem.
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Peer-to-peer (P2P) energy trading has received much
attention lately in [20]–[25]. A non-cooperative game was
introduced to model the interaction between sellers and
buyers for the energy trading platform in [20]. A contract
matching theory based approach was utilized in [21] to
find the optimal amount of power generation and the corre-
sponding electricity price. A robust algorithm was proposed
in [22] to correct the forecast error of renewable energy
generation for energy trading. The authors in [23] proposed
an optimal bidding strategy by considering discomfort level
and possible economic losses. Energy trading with shared
storage devices was proposed in [24], where end users can
book a part of the capacity of the shared storage system
to save the cost of installing storage devices at home. The
interactions between the end users, the power grid operator,
and the shared storage system were modeled as a Stackel-
berg game. The authors in [25] developed a two-time scale
algorithm to solve the P2P energy trading problem, and
blockchain technology was integrated to protect the data
from the external observers of the energy market.

In this paper, we propose a computational architecture
based on cloud computing for the VPP in smart grids
that implements energy trading and provides fast charging
services. This computational architecture can further realize
demand response. The architecture is similar to the ones in
[26], [27] where users bid for computing resources; however,
the users in our proposed architecture bid for energy. Specif-
ically, the VPP controls DC chargers [28], [29] to provide the
fast charging service. The sources of the chargers can be the
combination of power grid, renewable energy, and storage
devices so that the power requirement from the external
energy market is reduced. Moreover, the VPP operates an
energy trading platform in the cloud to form an internal
market in which EV owners can purchase energy. The rev-
enue of selling energy in the internal market is higher than
in the external market so that users with storage devices
are willing to sell energy surplus in the internal market.
Since the price in the energy trading platform will be lower
than the price in the external market, EV owners will be
willing to use the energy from the trading platform. Thus,
the VPP needs to purchase less power from the external
energy market to offer the DC charging service. The external
demand for charging EVs is reduced, and therefore this is
the way of implementing demand response in smart grids.
Different from [30], [31] that attempted to find the optimal
locations for the fast charging service, in this paper, we focus
on designing a framework of offering the fast charging ser-
vice without affecting the operation of the power grid. With
the proposed framework, EV owners receive fast charging
services from the VPP, and the VPP can mitigate congestion
for the DSO by dispatching energy obtained from the energy
trading users.

Our main contributions in this work are threefold:

• We propose a novel cloud-based computational ar-
chitecture for the VPP that operates an internal
market for implementing demand response in order
to enable users to sell their surplus energy in the
internal market, and EVs can receive a high charging
rate at the same time.

• We design algorithms to search for the Nash equilib-

rium (NE) of the non-cooperative game that models
the interactions between EV owners and the VPP.
Moreover, the computational complexities, the com-
munication overhead, and the performance of the
algorithms are analyzed.

• We analyze the performance of our algorithms for
real data from California Independent System Oper-
ator (CAISO). The results reveal that users with stor-
age devices can obtain significantly higher revenue
by participating in the proposed internal market and
that users with only EVs can also reduce the charging
cost significantly.

The rest of this paper is organized as follows. We begin
by introducing the system model in Section 2. Then, the
interactions of the users and the VPP are formulated as a
non-cooperative game in Section 3. The design of algorithms
for finding the NE of the game is provided in Section
4. Next, the real-world dataset to evaluate the proposed
method as well as the results of the evaluation are provided
in Section 5. Section 6 offers conclusions and suggestions for
future work.

2 SYSTEM MODEL

In this section, we introduce a novel framework based on
cloud computing that the VPP in smart grids uses to provide
for energy trading and charging services. We assume a total
of N users in the distribution grid that can be separated
into type-1, type-2, and type-3 users. The energy trading
framework can be regarded as an internal market for users.
Let N1, N2, and N3 denote the sets of type-1, type-2, and
type-3 users, respectively. In the internal market, the type-
1 users sell energy surplus to the energy trading platform.
The type-2 and the type-3 users purchase energy from the
trading platform, and the type-3 users can further purchase
energy by trading energy in their storage devices with the
VPP. The distribution grid is separated into M areas. The
set of the users in area j ∈ {1, 2, · · · ,M} is denoted by Aj .
Moreover, Ut represents the set of the type-2 and the type-
3 users in the internal market at time t. The price of pur-
chasing one unit of energy from the external energy market
at time t is denoted by kt. Considering the government’s
policy of providing economic incentives to end users to
promote renewable energy, ut is introduced as the unit price
from the external market guaranteed by the government for
users to sell energy surplus to the external market.

2.1 Type-1 User

In our scenario, each type-1 user only has renewable energy
generation, e.g., solar generation and a storage device. At
time t, the type-1 users can sell energy surplus in their
storage devices through the energy trading platform oper-
ated by the VPP. The i-th user in N1 offers aETi,t units of
energy from own storage device at unit price of bETi,t . The
VPP responds with a variable βi,t indicating the portion of
the energy to purchase from user i. The energy level in the
storage devices of user i (i ∈ N1) at time t is zi,t.
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TABLE 1
Comparisons of the proposed framework with existing literature

Energy Trading Demand Response EV Charging with
AC Chargers

EV Charging with
DC Chargers

VPP

[3]–[8] 8 8 4 8 8
[9], [11]–[16] 8 4 8 8 8

[10] 8 4 4 8 8
[17]–[19] 4 4 8 8 4
[20]–[25] 4 8 8 8 8

This paper 4 4 4 4 4

2.2 Type-2 and Type-3 Users

The type-2 and the type-3 users have EVs, and they wish
to receive charging services from the VPP. The difference
between the type-2 and the type-3 users is that the type-3
users also have renewable energy generation and storage
devices, while the type-2 users do not. The energy level in
the storage device of user l (l ∈ N3) at time t is zl,t. User
l (l ∈ N2 ∪ N3) joins the internal market at time αl, and
time for user l leaving the internal market is fl. We assign
each EV the same index as its user. The energy level of EV
l at time t is denoted by el,t. The maximum energy level
of EV l is emaxl , and thus the demand of EV l at time t is
dl,t = emaxl − el,t. Then, the EV owners set a price, bEVl,t , and
an amount of energy, aEVl,t , to the VPP at time t representing
the desired price and the desired amount of energy for user l
to use the charging service from the VPP through the energy
trading platform in the cloud. In the internal market, the
VPP also allows that user l ∈ N3 sends sEVl,t to purchase
energy by trading energy in the storage device with the VPP.
After executing energy trading algorithm, the total power
that EV l receives from the VPP at time t is

Pl,t = PGridl,t + PETl,t + ESTl,t /τ, (1)

where PGridl,t and PETl,t are the power from the power grid
and the energy trading platform, respectively. The energy
received for charging EVs by trading energy in the storage
devices with the VPP is ESTl,t , and τ is the duration of a
time slot. Since the type-2 users do not have storage devices
at home, ESTl,t is always set to 0 when l ∈ N2. The upper
bound and the lower bound of Pl,t are denoted by Pmaxl

and Pminl , respectively. After receiving power, the energy
level of the EV is updated by

el,t+1 = el,t + ηlPl,tτ, (2)

where ηl is the charging efficiency of EV l. User l ∈ N3

updates the energy level of the storage devices by

zl,t+1 = zl,t + gl,tτ − ESTl,t , (3)

where gl,t is the renewable power generation of user l at
time t.

2.3 VPP Model

With the type-1, the type-2, and the type-3 users, the VPP in
smart grids can construct and operate an internal market for
energy trading based on cloud computing in a time horizon
with T equal-length time slots, [t, t + τ, t + 2τ, . . . , t + Tτ ],
as illustrated in Fig. 1. When time t begins, all users

receive kt and ut from the external market. The type-1
users automatically submit the amount of energy to sell
and the corresponding price, aETi,t and bETi,t , to the energy
trading platform deployed in the cloud and then receive
the decision, βi,t, from the cloud. The type-2 and the type-
3 users provide the desired amount of energy of charging
EVs and the desired price, aEVl,t and bEVl,t , to the VPP.
Moreover, the type-3 users can send sEVl,t to trade energy
in the storage devices for charging. With this information,
the VPP executes the algorithm in the cloud, and then EVs
receive Pl,t from the chargers controlled by the cloud. At
the same time, the VPP determines to purchase an amount
of energy, wt, from the external energy market if the power
generation from renewable energy resources is not enough
or the energy levels in the storage devices are low. Thus,
the total amount of the energy purchased from the external
market is represented as

Etotalt = τ
∑
l∈Ut

PGridl,t + wt. (4)

The power generation of renewable energy resources at time
t is rt, and the energy level of the storage device at time t is
zV PPt . The state of the storage devices is defined as

zV PPt+1 = zV PPt + wt + τrt −
∑
l∈Ut

(τPETl,t + ESTl,t ). (5)

Then, the total energy obtained from the j-th area at time t,
oj,t, can be defined as in (6)

oj,t =
∑

i∈Aj∩N1

βi,ta
ET
i,t +

∑
l∈Aj∩N3∩Ut

ESTl,t . (6)

The VPP can obtain energy from the type-1 and the type-
3 users. The type-1 users participate in the energy trading
platform by selling energy surplus, and the type-3 users
trade energy for charging EVs with the VPP by energy in
their storage devices. Therefore, the first sum defines energy
obtained from the type-1 users in area j, and the total
amount of energy obtained from the type-3 users in area
j is represented by the second sum. User i ∈ N1 updates
the energy level of the storage device by

zi,t+1 = zi,t − βi,taETi,t . (7)

2.4 Cloud-based Platform
In Fig. 1, the energy trading platform of the VPP is deployed
in the cloud, e.g., Microsoft Azure. This is motivated by
an Australian energy company, AGL, that also deploys
energy services in Microsoft Azure [32]. The cloud service
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Fig. 1. System model used in this paper.
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Fig. 2. Structure of energy trading platform deployed in the cloud.

providers can provide stability, scalability, and security of
the computing resources so that the VPPs do not need to
invest and maintain the infrastructures by themselves. The
structure of the platform is introduced in Fig. 2. The VPP
has an application in iOS and Android, and the platform
can be accessed through the application. Once the users are
presented in the platform, they can set the parameters as
designed in Sections 2.1 and 2.2. The parameters sent by the
users are stored in the database, e.g., MySQL. A solver then
uses the parameters in the database to execute the energy
trading algorithm that will be designed in Section 4. The
outputs of the solver, introduced in Section 2.3, are sent to
the chargers and are also stored in the database. The VPP
obtains energy from the type-1 users and charges the EVs
with Pl,t for the type-2 and the type-3 users. During energy
trading, the VPP should verify that the type-1 and the type-
3 users actually have this amount of energy in the storage
devices. Moreover, this verification process needs to take the
privacy of the users into account. To this end, some methods
based on cryptography can be utilized. Since this part is not
the main point of this paper, we refer [33], [34] for more
details.

3 GAME FORMULATION

As shown in Fig. 1, the VPP in smart grids builds an energy
trading platform to form an internal market in the cloud for
the users. The type-1 users sell energy surplus in their stor-
age devices to make profits by participating in the platform.

For the type-2 and type-3 users, they wish to receive high
charging rates by utilizing energy in the storage devices of
the VPP and the renewable energy. The VPP can get profit
by operating the energy trading platform and selling energy
received from the type-1 and the type-3 users to mitigate the
congestion for the grid operator. In this internal market, the
VPP wants to maximize its profit; however, EV owners aim
to spend less for charging EVs. Therefore, the interactions
can be modeled as a non-cooperative stochastic game with
the following main components:

• kt represents the real-time electricity price at time t;
• ut represents the electricity price guaranteed by the

government to sell energy to the external market at
time t;

• rt represents the state of the renewable power gener-
ation at time t;

• zV PPt is the energy level of the storage devices of the
VPP at time t;

• Pl,t is the action of the VPP to determine how much
power should be used to charge EV l;

• βi,t is the action of the VPP that determines how
much portion of the bid of the type-1 users should
be accepted;

• aEVl,t and bEVl,t are the actions of the EV owners rep-
resenting the desired energy and the corresponding
price to receive the service from the VPP;

• the type-2 users, the type-3 users, and the VPP are
the players in the game;

• RETt , RBEt , and Cgridt are the payoff functions of the
VPP; and

• CGridl , CBEl , CETl , and CTimel are the payoff func-
tions of the type-2 users and the type-3 users.

In the game, the type-1 users are not regarded as the players.
This is because the VPP operates the internal market, and
therefore the type-1 users cannot obtain the requirement of
the type-2 and the type-3 users from the VPP to adjust the
amount of energy to sell and the corresponding price. There-
fore, the amount of energy to sell and the corresponding
price provided by the type-1 users are considered as inputs
to the game.

The cost, RETt , for the VPP operating the energy trading
platform is defined as

RETt =
∑
i∈N1

βi,ta
ET
i,t b

ET
i,t − τ

∑
l∈Ut

PETl,t b
EV
l,t , (8)

where the first sum indicates the cost of purchasing energy
from the type-1 users, and the second sum represents the
revenue of selling energy to the type-2 and the type-3 users.
Then, as mentioned in [35], the VPPs can contribute to
mitigating congestion of the distribution grid by dispatching
energy obtained from the nearby area. That is, the transmis-
sion loss can be reduced if the VPP dispatches energy near
the congestion area. Therefore, the VPP wants to receive
energy from the storage devices of the type-1 and the type-
3 users equally distributed among areas in the distribution
grid so that the second payoff function of the VPP is

RBEt = ||x||2, (9)
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with x = [x1, x2, · · · , xM ] and

xj =
∑

i∈Aj∩N1

βi,ta
ET
i,t +

∑
l∈Aj∩N3∩Ut

ESTl,t +
t−1∑
t̂=1

oj,t̂, (10)

where xj represents the total amount of energy obtained
from area j and the third term in (10) indicates the cumula-
tive energy obtained from area j up to time t− 1. The third
payoff function of the VPP is

CGridt =
t+Tτ∑
t=t

Etotalt kt, (11)

where it represents the procurement cost for purchasing
energy from the external energy market in the time window.

For EV owner l, it has four payoff functions{
CGridl =τPGridl,t kt, C

ET
l = τPETl,t b

EV
l,t ,

CBEl =αEV E
ST
l,t , CTimel = t− αl + dl,t/(τPl,t),

(12)

where CGridl , CETl , and CTimel represent the cost for us-
ing energy from the grid to charge the EV, the cost for
purchasing energy from the energy trading platform, and
the waiting time cost, respectively. The type-3 users trade
energy in the storage device to receive energy for charging
EVs from the VPP, and therefore they have less energy to
use in the household. Function CBEl is the cost for this part.

The VPP aims to minimize the operation cost denoted by
the following optimization problem.

min
wt,βi,t,Pl,t,oj,t

RETt +RBEt + CGridt (13a)

subject to 0 ≤ zV PPt ≤ zmax, (13b)

max{zdis,−zV PPt } ≤ zV PPt+1 − zV PPt ≤ zch,
(13c)

0 ≤ Etotalt ≤ Emax, (13d)

ut ≤ bETi,t ≤ kt, ∀i ∈ N1, (13e)

ut ≤ bEVl,t ≤ kt, ∀l ∈ Ut, (13f)

0 ≤ βi,t ≤ 1, ∀i ∈ N1, (13g)∑
i∈N1

βi,ta
ET
i,t =

∑
l∈Ut

τPETl,t , (13h)

0 ≤ τPETl,t ≤ aEVl,t , ∀l ∈ Ut, (13i)

0 ≤ ESTl,t ≤ sEVl,t , ∀l ∈ Ut, (13j)

0 ≤ τPGridl,t , ∀l ∈ Ut, (13k)
fl∑
t=αl

τPl,t =
dl,αl

ηl
, ∀l ∈ Ut. (13l)

The energy level of the storage devices of the VPP is
bounded by the capacity in (13b). Eq. (13c) is the constraint
related to the charging and discharging of the storage de-
vices. The limit of the total amount of energy purchased
from the external energy market is stated in (13d). The
pricing constraint of the users is provided in (13e) and
(13f). Specifically, the type-1 users want to sell energy at
a price higher than ut. Then, the type-2 and the type-3
users should purchase energy with a price higher than ut to
attract the type-1 users to participate in the energy trading
platform. Moreover, kt is the upper price limit. Eq. (13g)
is the constraint related to βi,t. Constraint (13h) ensures

that energy purchasing from the type-1 users should be the
same as the energy for charging EVs. The maximum and the
minimum values of each component of Pl,t are presented in
(13i)-(13k). The VPP has to fulfill the demand of the EV users
when the time slot reaches fl as mentioned in (13l).

EV owners aim to minimize the total cost related to
charging the EVs with different sources and waiting time,
and therefore the type-2 and the type-3 users solve the
following optimization problem.

min
PGrid

l,t ,EST
l,t ,P

ET
l,t

CGridl + CBEl + CETl + CTimel (14a)

subject to Pl,t = PGridl,t + PETl,t + ESTl,t /τ, (14b)

Pminl ≤ Pl,t ≤ Pmaxl , (14c)

PGridl,t ≥ 0, ESTl,t ≥ 0, PETl,t ≥ 0, (14d)

ESTl,t = 0, ∀l ∈ N2, (14e)

0 ≤ el,t ≤ emaxl , (14f)
emaxl ≤ el,fl . (14g)

The total power for charging the EV is stated in (14b), which
is bounded by Pminl and Pmaxl , as specified in (14c). In
(14d), it ensures that components of Pl,t is non-negative.
Moreover, the type-2 users do not have storage devices,
and therefore ESTl,t is set to 0 for type-2 users in (14e).
The energy level of the storage device should be non-
negative and cannot exceed the maximum level, as stated
in (14f). Constraint (14g) indicates that the demand should
be fulfilled when users leave the internal market.

4 ALGORITHM DESIGN

4.1 Price Determination
The EV owners’ interest is to minimize the total cost for
charging EVs. According to (13f), the unit price for pur-
chasing energy in the internal market is lower than buying
it from the external market. Therefore, EV owners prefer
joining the internal market rather than the external market.
However, they should decide how to set the optimal value
for bEVl,t . They have a high chance to receive power if they set
the desired price of electricity, bEVl,t , close to electricity price
in the external market, kt. This strategy incurs a relatively
high charging cost. By contrast, EV users can set the value
of bEVl,t close to its minimum value, ut, indicated by (13f)
to reduce the charging cost. This may reduce the chance of
receiving power from the VPP. In the following, we discuss
how to choose the optimal value for bEVl,t .

Consider a price function for EV owners as

bEVl,t = Dl(a
EV
l,t − Ebaset )2 +Bt, (15)

where Dl is the surge price. The surge price indicates that
the user raises the price if the user wishes to receive more
energy than Ebaset . Quantities Ebaset and Bt are the base
energy and the base price provided by the VPP, respectively.
Considering the time limit, the EV user chooses aEVl,t based
on

arg min
aEV
l,t

bEVl,t + γ(dl,t − aEVl,t − sEVl,t ), (16)

where γ is a tradeoff parameter. Eq. (16) ensures that EV
owners receive a penalty if energy received for charging
cannot meet the demand when the value of bEVl,t is set
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very low. There is no constraint in (16), and therefore the
optimal value of aEVl,t can be obtained by using the first
order derivatives of (16) as

aEV
∗

l,t = min

{
dl,t − sEVl,t , Ebaset +

γ

2Dl

}
. (17)

In (15), the value of Dl should also be determined
for which we utilize the relationship between energy for
charging and remaining time slots for EV owners. This point
is formalized in the following assumption.

Assumption 1. The required energy amount sent by the EVs,
i.e., aEV

∗

l,t and sEVl,t , should be greater than the demand equally
distributed to the remaining time slots as

aEV
∗

l,t + sEVl,t ≥
dl,t
fl − t

. (18)

By using (18) and the solution of aEV
∗

l,t obtained from
(17), we can get

0 ≤ Dl ≤
[

γ(fl − t)
2dl,t − 2(Ebaset + sEVl,t )(fl − t)

]
+

, (19)

where [a]+ indicates max{a, 0}. In practice, (19) provides a
way for EV owners to set a proper value for Dl to further
settle the value of bEVl,t . The calculation in this section is
listed in Appendix A in detail.

Algorithm 1: Online VPP Operation Algorithm

Input: aETi,t , bETi,t , rt, sEVl,t
Output: PGridl,t , ESTl,t , PETl,t , wt

1 VPP calculates Bt and Ebaset with Algorithm 2
2 EV owners choose Dl based on (19)
3 EV owners submit aEVl,t with (17) and bEVl,t with (15)
4 VPP solves problem P1

5 PGridl,t is obtained from (22)
6 VPP executes Algorithm 3 to solve P2 and get wt
7 VPP updates zV PPt with (5), type-1 users update zi,t

with (7), and type-3 users update zl,t with (3)

4.2 Searching for Nash Equilibrium

In this section, we design Algorithm 1 to search for the
NE of the game. When time slot t begins, the type-1 users
deliver the amount of energy to sell and the corresponding
price, aETi,t and bETi,t , to the VPP. At the same time, EV
owners submit the desired amount of energy for charging
EVs and the desired price, aEVl,t and bEVl,t , to the VPP. The
type-3 users further provide sEVl,t to the VPP. Moreover,
the type-3 users prefer receiving the energy for charging
through trading energy in the storage devices than through
the energy trading platform. This is because the value of the
unit price for trading energy with the VPP, αEV , is assumed
to be very small, and therefore the cost of purchasing energy
by trading energy in the storage devices with the VPP in the
internal market for the type-3 users is much less than the
cost of purchasing energy from the external market, CGridl ,
and the cost of purchasing energy from the internal market,
CETl . This is further clarified in Appendix B.

After receiving all parameters from the users, the VPP
first accepts the bids from the type-3 users. That is because
the VPP can receive a subsidy from the government by pro-
moting the installation of renewable generation and storage
devices to end users.

Next, the VPP calculates the base price of unit energy
and the amount of available energy, Bt and Ebaset , as shown
in line 1 in Algorithm 1. The steps of calculating Bt and
Ebaset are summarized in Algorithm 2. Specifically, we sort
the price determined by the type-1 users, bETi,t , in increasing
order in line 1 in Algorithm 2. From line 2 to line 3 in
Algorithm 2, Ebaset is determined by the remaining energy,
aremain, equally distributed to the users in the internal
market after accepting the bids from the type-3 users. Next,
we examine the sorted list and select the amount of energy
equal to the remaining energy and calculate the accumu-
lative cost, caccu from line 5 to line 9 in Algorithm 2. The
base price of unit energy, Bt, is then the average of the
accumulative cost as described in line 10 in Algorithm 2.

Algorithm 2: Algorithm for Obtaining Ebaset andBt
Input: aETi,t , bETi,t , rt
Output: Ebaset , Bt

1 Sort type-1 users based on their bETi,t with increasing
order as e1, e2, . . . , e|N1|

2 aremain = rtτ + min{zV PPt , zdis} −
∑
l∈N3∩Ut s

EV
l,t

3 Ebaset = aremain
|Ut|

4 caccu = 0, k = 1
5 while aremain > 0 ∩ k ≤ |N1| do
6 ∆ = min{aremain, a

ET
ek,t
}

7 aremain = aremain −∆
8 caccu = caccu + ∆ ∗ bETek,t
9 i← i+ 1

10 Bt = caccu
|Ut|

From line 2 to line 3 in Algorithm 1, the values of aEVl,t
and bEVl,t are determined using (17) and (15), respectively,
after getting Ebaset and Bt from the VPP. The calculation of
bEVl,t may exceed kt that violates (13f). Therefore, the value
of bEVl,t should be corrected after utilizing (15) as

bEVl,t =

{
bEVl,t , bEVl,t ≤ kt,
kt, bEVl,t > kt.

(20)

With the information from all users, the VPP attempts to
solve (13). However, the original formulation, (13), contains
two different time scales that make it hard to solve directly.
To address this issue, the original problem, (13), is sepa-
rated into two subproblems, P1 and P2, according to the
time scale. Problem P1, formulated as (21), minimizes the
operation cost for operating the internal market in a time
slot with wt = 0 and PGridl,t = 0.

P1 : min
βi,t,PET

l,t ,oj,t
RETt +RBEt (21a)

subject to (13b), (13c), (13g)− (13j). (21b)

Here, the upper bound of bEVl,t is limited to the electricity
price of the external market, kt, by using (20). Furthermore,
the lower bound of bEVl,t is the base price of unit energy
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provided by the VPP, Bt, that is larger than ut. Therefore,
the constraint in (13f) is followed. In line 4 in Algorithm
1, Problem P1 is solved by using the interior-point method
[36].

After solving P1, the value of PGridl,t is to be determined
by checking value of PETl,t and ESTl,t and the constraint in
(14c). If PETl,t = 0 and ESTl,t = 0, the VPP will provide a
basic level of the power for charging EVs, PGridl,t = Pminl .
Otherwise, PGridl,t is set to 0. This relation can be expressed
as

PGridl,t =

{
Pminl , ESTl,t + τPETl,t = 0, l ∈ Ut,
0, ESTl,t + τPETl,t > 0, l ∈ Ut,

(22)

where it is mentioned in line 5 in Algorithm 1.
The objective function of Problem P2 is to minimize the

procurement cost for T time slots. We formulate P2 as

P2 : min
wt

CGridt (23a)

subject to (13b)− (13d), (13l). (23b)

Minimizing the objective function of P2 needs all the infor-
mation of kt for the T time slots. However, the VPP can only
obtain limited information about the kt in the future because
of the policy of the external energy market. Problem P2 can
therefore not be solved directly. We then design Algorithm
3 to find the solution to P2 and discuss it in more detail
in Section 4.3. Algorithm 3 contains a forward step and a
backward step. The forward step initializes the future wt
at the beginning of the algorithm, and then the backward
step updates the current wt based on the future cost. After
executing Algorithm 3 in line 6 in Algorithm 1, the VPP
charges EV l with Pl,t. In addition, the VPP purchases wt
unit energy from the external market. The type-1, the type-
3, and the VPP update their states of the storage devices in
line 7 in Algorithm 1. The VPP starts the procedure again
when another time slot begins. We prove that the solution
solved by the proposed algorithm is the NE of the game in
Appendix C.

4.3 Procurement Decision

In Section 4.2, we separated the original optimization prob-
lem for the VPP, i.e., (13), into two subproblems, P1 and P2.
The objective function of P1 spans only one time slot, and
therefore it can be solved directly. However, the solution for
P2 needs to take the future cost into account. We then design
an online algorithm considering the future cost to solve P2.

For the design, we first transfer the original objective
function of a time slot to the form:

ft(wt, δt) = wtkt + δt(yt − wt)−
Γδ2t
2
, (24)

where yt is obtained from

yt =
∑
l∈Ut

(
dl,t
fl − t

− τPl,t
)
. (25)

In (24), the first term indicates the electricity cost, and the
second term represents the penalty function if energy in
the storage devices cannot meet the remaining demand of
EV owners. Quantity δt can be regarded as a Lagrangian
multiplier, and Γ is used to limit the value of δt in the

Current 
Information

Predictable 
Information

Unpredictable Information

Fig. 3. Time window with the description of each time slot.

third term in (24). Then, an auxiliary function is added to
ft(wt, δt) to form the following function

Ft(wt, δt) = ft(wt, δt) +
ρ

2
||wt − wt−1||22, (26)

where the second term indicates the penalty for the huge
variation for wt between two consecutive time slots. The
total cost can be denoted by FT =

∑t+Tτ
t=t Ft(wt, δt). To

obtain the minimum value of FT , online gradient can be
utilized. The first-order derivative of FT can be obtained
from

∇wtFT = ∇wtft(wt, δt) + ρ(2wt − wt−1 − wt+1). (27)

Moreover, the online update with Nesterov’s accelerated
gradient is applied as

wt = wt−1 − η∇wt
FT (yt−1, δt−1),

yt = (1 + ξ)wt − ξwt−1,
δt = δt−1 + µ∇δtFT (wt−1, δt−1).

(28)

Here, the value of ξ is defined by 1−√ςη
1+
√
ςη .

We assume that W -long look-ahead window of informa-
tion is available as shown in Fig. 3. Here, the information
is kt. This assumption is reasonable because the VPP can
access the price of future W time slots in the external energy
market. Thus, the algorithm can exploit this information
to reach better results. Specifically, an algorithm containing
forward and backward steps can be designed. The update
method is summarized in Algorithm 3.

At the beginning of Algorithm 3, the feasible set of
wt is constructed, denoted by Wt. In Algorithm 3, wmt
denotes the value of wt during the m-th iteration. Then,
the forward steps begin. That is, wt+W is initialized in line 3
of Algorithm 3. After the forward steps, the backward steps
start from wt+W−1 to wt. Specifically, the decision at time
slot t+ 1 is utilized to update the decision at time slot t. The
steps of backward updates are provided from line 5 to line 8
in Algorithm 3. The symbol ΠWt

in Algorithm 3 represents
the projection of outcome to the set Wt. We provide the
proof of convergence of the algorithm in Appendix D.

4.4 Computational Complexity Analysis

In this section, we analyze the computational complexities
of the proposed algorithms. Algorithm 1 contains the steps
of utilizing Algorithms 2 and 3. Hence, the complexities of
using Algorithms 2 and 3 are analyzed first.

For Algorithm 2, the VPP calculates Bt and Ebaset and
then broadcasts them to EVs. In Line 2, the algorithm re-
quires sorting, and therefore the computational complexity
is O(|N1| log |N1|). The computational complexity from line
2 to line 4 is O(1) since it is not related to the number of
users. Line 10 has also the computational complexity of
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Algorithm 3: Online Cost Minimization Algorithm

Input: η, µ,Γ, ρ,W∈ R+, ξ
Output: wt

1 Build the feasible set of wt,Wt, based on (13b)-(13d)
2 Foward Initialization
3 m = 1
4 wmt+W =

ΠWt

(
wmt+W−1 − η∇wtft+W−1(wmt+W−1, δ

m
t+W−1)

)
5 δmt+W =

ΠR+

(
δmt+W−1 − µ∇δtft+W−1(wmt+W−1, δ

m
t+W−1)

)
6 ymt+W = wmt+W
7 Backward Update
8 for t = t+W-1 to t do
9 m← m+ 1

10 wmt = ΠWt

(
ym−1t − η∇ytFT (ym−1t , δm−1t )

)
11 ymt = (1 + ξ)wmt − ξwm−1t

12 δmt = ΠR+

(
δm−1t − µ∇δtFT (wm−1t , δm−1t )

)
13 wt = wmt

O(1). The computational complexity is O(|N1|) from line
5 to line 9. In summary, the total computational complexity
is O(|N1|+ |N1| log |N1|).

Algorithm 3 decides to purchase wt amount of energy
from the external market. The computational complexity of
Algorithm 3 is O(W ), which is determined by the length of
the look-ahead window, without considering the computa-
tional complexity of the projection. Then, the feasible set of
wt is a box, and therefore the projection of wt to the feasible
set does not incur a significant computation overhead. Thus,
the computational complexity of Algorithm 3 is still O(W ).

In Algorithm 1, the computational complexities in line 1
and line 6 come from the execution of Algorithm 2 and 3, re-
spectively. The computational complexities of the two algo-
rithms are analyzed above. The computational complexity
from line 2 to line 3 is O(|Ut|). Moreover, the computational
complexity of line 5 isO(|Ut|). Solving Problem P1 therefore
results in a computational complexity of O(n3) [36], where
n is |N1|+ |Ut|.

4.5 Communication Overhead Analysis
Communication overhead is also important to consider
when utilizing cloud computing. Here, the communication
overhead of Algorithm 1 is analyzed.

In line 1 of Algorithm 1, the type-1 users submit the
amount of energy to sell and the corresponding price, aETi,t
and bETi,t , to the VPP and therefore the communication
overhead is O(2|N1|). The VPP broadcasts the base price
of unit energy and the base amount of available energy,
Bt and Ebaset , to the type-2 and the type-3 users in the
internal market at time t; the communication overhead is
thenO(2|Ut|). The communication overhead when the type-
2 and the type-3 users submit the desired amount of energy
of charging EVs and the desired price, aEVl,t and bEVl,t , to the
VPP is O(2|Ut|). With the information from all users, the
VPP solves Problem P1. After solving Problem P1, the VPP
sends βi,t to the type-1 users. The VPP also sends the power
of charging EVs from different resources, PGridl,t , PETl,t , and
ESTl,t /τ , to the chargers. The communication overhead after

solving Problem P1 isO(|N1|+3|Ut|). There is no communi-
cation for line 5 in Algorithm 1. In line 6, Algorithm 3 should
be applied, and the VPP needs to obtain the electricity price
information of futureW time slots from the external market.
The communication overhead of obtaining the electricity
prices from the external market is O(W ). In summary, the
overall communication overhead is O(3|N1|+ 7|Ut|+W ).

5 NUMERICAL RESULTS

We consider a total of N users in the distribution grid. Here,
three scenarios, N = 50, N = 100, N = 200, are studied,
and the distribution grid is separated into 3 areas, M =
3. Then, according to the data in [37], it is reasonable to
consider that 50% of the users have EVs. Three different
capacities, 30 kWh (short range), 60 kWh (medium range),
and 80 kWh (long range), are randomly assigned to EVs.
Moreover, 40% of users with EVs also have storage devices.
The capacity of the storage device of the users is set to 15
kWh according to the parameters of Sonnen Eco 9.53. This
storage device can support the power generation capacity of
solar panels up to 7 kW. Therefore, the capacity of renewable
energy generation is randomly generated from [3, 6] kW for
the users with storage devices. The value of αEV is set to
0.001. The capacity of storage devices and the capacity of
renewable energy for the VPP is provided in Table 2. The
value of Emax is set to 40 kWh. The price guaranteed by the
government from the external market, ut, is set to 10 cents
USD per kWh.

The time horizon is divided into 96 time slots with a
length of 15 minutes to represent a 24-hour period. The
time for starting to participate in the internal market is
generated randomly between 12 : 00 and 20 : 00. Moreover,
the corresponding energy level in EVs is randomly and uni-
formly generated from the interval [0, emaxl ]. The maximum
charging rate for EVs, Pmaxl , is set to 100 kW, and 1 kW is
assigned to Pminl . The charging efficiency of EV l, ηl, is set
to 0.95. The length of the look-ahead window, W , is set to
4. The value of γ is set to 6 for (16). For Algorithm 3, η, µ, ρ,
Γ are set to 0.5, 0.2, 0.3, and 2.5, respectively.

The real-time electricity price and the real renewable
energy production profile are obtained from California Inde-
pendent System Operator (CAISO) [38]. Moreover, the data
on 07/20/2020 are applied to the simulations. According to
the renewable energy (solar and wind) generation capacity
and the corresponding generation profile in California, we
further created the generation profile of renewable energy
used in the simulation. The simulations for computation
time are conducted with MATLAB running on Intel i5-8500B
computer with 3.0 GHz CPU and 16 GB RAM.

The proposed method is compared with a scenario that
consists of only type-1 and type-2 users. Then, the algo-
rithms in [21] and [39] are used to compare with the pro-
posed method. Specifically, the algorithm in [21] is designed
for solving the P2P energy trading problem by applying
the contract-matching theory. Then, the VPP is only used
to manage the charging tasks of EV owners in [39].

5.1 Analysis: Pricing Output
Here, we compare the output of four different scenarios for
our proposed pricing scheme described in Section 4.1. The
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TABLE 2
The parameter setting for different number of EVs

N 50 100 200

|N1| 25 50 100
|N2| 15 30 60
|N3| 10 20 40

zmax (kWh) 300 600 1200
zdis, zch (kWh) 15 30 60

Wind Capacity (kW) 40 80 160
Solar Capacity (kW) 30 60 120

TABLE 3
The price submitted from user under different cases and time

t
14 : 00 15 : 00 15 : 15 15 : 30 15 : 45

Case 1-1 15.00 15.00 15.00 15.00 60.00
Case 1-2 15.00 45.00 60.00 60.00 60.00

Case 1-3 15.00 15.00 15.00 15.00 27.00
Case 1-4 15.00 30.00 40.71 60.00 60.00

price from the external market, kt, is set to 60 cents USD per
kWh, and the value of Bt from the VPP is 15 cents USD. The
leaving time of user l, fl, is 16 : 00.

Case 1-1: The user is a type-2 user. The value ofEbaset

is set to 50 kWh, and the demand of the user is 20
kWh.
Case 1-2: The user is a type-2 user. The value ofEbaset

is set to 10 kWh, and the demand of the user is 20
kWh.
Case 1-3: The user is a type-3 user. The value ofEbaset

is set to 50 kWh, and the demand of the user is 20
kWh. The user sets sEVl,t to be 5 kWh.
Case 1-4: The user is a type-3 user. The value ofEbaset

is set to 10 kWh, and the demand of the user is 20
kWh. The user sets sEVl,t to be 5 kWh.

The results are shown in Table 3. The difference between
Case 1-1 and Case 1-3 is the type-2 user in Case 1-1 and
the type-3 user in Case 1-3. It is the same for Case 1-2
and Case 1-4. The proposed method accepts type-3 users
to receive energy for charging by trading energy in their
storage devices. Therefore, the pricing outcome of type-2
and type-3 users is compared.

According to the results, the type-2 user in Case 1-1 sets
a higher price on bEVl,t than the type-2 user in Case 1-2.
This is because the VPP offers energy, Ebaset , higher than
the demand with price Bt; the demand of the user can be
fulfilled, and in order to minimize the cost, the user will not
set a higher value on bEVl,t . Moreover, the user sets a higher
price when Ebaset is not enough for the demand, which is at
time 15 : 45. The situation is opposite for the type-2 user in
Case 1-2; the user sets a high price from 15 : 00. The same
trend can be observed for the type-3 users in Case 1-3 and
Case 1-4. Furthermore, one can notice that the type-3 user in
Case 1-3 sets 55% lower value on bEVl,t than the type-2 user
in Case 1-1 at time 15 : 45. This is because the type-3 user
can receive energy by trading energy in the storage devices.
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Fig. 4. Revenue of users in different scenarios.

5.2 Analysis: User Revenue

After comparing the pricing determined by the users, we,
next, compare revenue for the users. For the type-1 users, the
revenue is separated into two parts, (i) revenue from selling
energy to the external market with the price guaranteed
by the government, and (ii) participating in the internal
market if applicable. A negative sign is put to the charging
cost of type-2 and type-3 users so that the value becomes
the revenue. Type-3 users may have energy surplus in the
storage devices, and therefore they can also sell energy to
the internal market if applicable or to the external market.
The average revenue of users is presented in Fig. 4.

According to the results, the type-1 users get average
210% higher revenue than only selling energy to the external
market. This is because the price in the internal market is
higher than the external market according to (13e). More-
over, EV owners are willing to pay more if they are about to
leave the internal market but the demand is not fulfilled as
discussed in Section 5.1. Therefore, the type-1 users get more
benefits by participating in the internal market. The type-2
users can also reduce around 47% of the charging cost by
participating in the internal market for the same reason that
the price in the internal market is lower than in the external
market. The type-3 users can further reduce the charging
cost by nearly 140% where type-3 users can get profit. This
is because the type-3 users do not need to pay for trading
energy with the VPP, and they can sell energy surplus to the
external market.

After analyzing the revenue of users, the charging rate
and the charging time of the type-2 and the type-3 users
are compared. Here, the charging time indicates the time
difference between αl and the time when the energy level
of the battery reaches emaxl . The average charging power
for EVs is denoted by P̄l,t. The statistics are summarized
in Table 4. According to the results, the type-3 users can
obtain slightly lower charging times, i.e., 7%, than the type-2
users. Moreover, the type-3 users receive around 52% higher
average charging rate and around 32% higher charging rate
in a time slot than the type-2 users. This is because the type-
3 users benefit from receiving energy for charging with high
priority by trading energy in their storage devices with the
VPP. According to Fig. 4 and Table 4, the type-3 users can
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TABLE 4
Average Charging Rate and Charging Time of Users

N Type ¯Pl,t (kW) maxPl,t (kW) Charging Time (h)

50
2 5.96 16.33 1.80

3 11.21 23.92 1.70

100
2 5.86 21.61 1.76

3 7.48 29.78 1.54

200
2 8.12 25.00 1.59

3 11.52 37.14 1.49

TABLE 5
Profit and power obtained by the VPP

N
50 100 200

Profit ($) 18.22 33.84 122.43

Area 1 (kWh) 162.48 327.62 478.27
Area 2 (kWh) 240.52 346.95 551.56
Area 3 (kWh) 153.64 317.49 531.18

spend less on purchasing energy and obtain higher charging
rates for charging EVs. Therefore, the proposed framework
can incentivize more users to install renewable energy and
storage devices at home.

5.3 Analysis: VPP Revenue

The revenue of the VPP and the energy it obtains are sum-
marized in Table 5. According to the results, one can notice
that the profit of the VPP is not significant. This is because
the calculation in Algorithm 2 provides the basic price for
purchasing energy in the internal market. Specifically, the
VPP offers the minimum price to obtain an amount of Ebaset

energy from the internal market without getting any profit.
Then, users set higher prices according to (15) if they want to
receive more energy. The VPP can obtain the power equally
from each area because of the 2-norm in (9). With energy
obtained from the users, the VPP can sell energy back to the
external energy market and further mitigate congestion for
the DSO to further make profits.

The value of W can influence the revenue of the VPP.
Specifically, the VPP can purchase more power in the current
time slot if it knows that the electricity price in the future
will be higher than in the current time slot, and the energy
level in the storage device is not enough in the current time
slot. Increasing the value of W may, however, cause the
additional computation cost. Thus, the revenue of the VPP
and the computation time are evaluated together and are
summarized in Table 6. The revenue increases by 11.67%
when W changes from 4 to 16. This can clearly indicate
that the length of predictable information can influence the
decision of the VPP. The revenue cannot further improve if
W is further set to 20. According to the results, we can say
that the suitable value ofW is 16 underN = 100. Increasing
the value of W can also raise the computation time as more
interations are required. Although the computation time
rises 57.03% when W is changed from 4 to 20, the value
of computation time is still relatively low. This is because

TABLE 6
Profit Comparison with Different W under N = 100

W
4 8 12 16 20

Profit ($) 32.47 34.69 35.43 36.37 36.26

Time (10−4s) 1.35 1.52 1.61 1.85 2.12

Algorithm 1 Algorithm in [21] Algorithm in [39]
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Fig. 5. Revenue of users in different scenarios.

only linear computation is required, and the projection is
not complex in Algorithm 3.

5.4 Analysis: Performance Comparison

The revenue of using the proposed method compared with
the algorithms in [39] and [21] is provided in Fig. 5. In [39]
and [21], the type-3 users are not presented, and therefore
the revenue of the type-3 users is set to 0. The energy trading
is considered in this paper and in [21], and the revenue of
selling energy in the energy trading platform is higher than
selling energy to the external market. Therefore, the revenue
of the type-1 users in [39] is around 51% less than for the
type-1 users in the proposed algorithm and in [21]. Then,
the type-1 users set the same price in the simulations so that
the type-1 users have the similar revenue in the proposed
method and in [21]. In [39], the type-2 users obtain the
highest charging cost that is nearly 43% higher than for
the proposed method. This is because EV owners pay the
same electricity price as the external market to utilize en-
ergy from the external market and energy from the storage
devices of the VPP to charge EVs. The electricity cost can be
reduced by participating in the internal market for the type-
1 users. Then, the proposed method causes less electricity
cost because the type-2 users in [21] require more energy
from the external market. Therefore, the type-2 users in [21]
still spend about 15% more than the proposed method. If the
EV owners have renewable energy generation and storage
devices, the electricity cost can be further reduced as shown
by the type-3 users.

The statistics of the VPP are summarized in Table 7.
The total amount of energy purchased from the external
market is calculated by

∑
t(
∑
l P

Grid
l,t τ +wt). The algorithm

in [39] has all the future information, e.g., electricity price,
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TABLE 7
Profit and energy obtained from the external market by the VPP

Profit ($)
∑

t(
∑

l P
Grid
l,t τ + wt) (kWh)

Algorithm 1 33.70 20.63
Algorithm in [21] 48.49 37.11
Algorithm in [39] −8.19 19.48

renewable energy production, and base load profile, so
that it can determine the optimal amount of energy to be
purchased from the external market. The proposed method
only obtains the electricity price of future W time slots that
results in purchasing about 6% higher amount of energy
than [39]. However, the VPP in [39] obtains the minimum
profit because it does not operate an internal market to make
profit, and it requires to purchase energy from the external
market to charge their storage devices. The algorithm in
[21] purchases around 90% higher amount of energy from
the external market compared to the proposed method and
[39]. This energy is used to provide EVs with the defined
minimum energy, Pminl τ , to charge EVs.

6 CONCLUSION

In this paper, we proposed a novel framework of an internal
market based on cloud computing operated by the VPP
in smart grids with three groups of users such that the
users can sell energy surplus in their storage devices to the
market, while users with EVs can purchase energy to charge
their EVs. We modeled the interactions between the VPP
and the users as a non-cooperative game and designed an
algorithm to find the Nash equilibrium of the game. We also
analyzed the performance of the proposed algorithm. We
utilized data from California Independent System Operator
(CAISO) to validate our proposed algorithm and evaluated
its performance in terms of the revenue of the VPP and the
revenues of the users. The results revealed that users can
get nearly 200% higher revenue compared to only selling
energy to the external market. At the same time, users
with EVs can significantly reduce their charging costs with
higher charging rates without degrading the operation of
the power grid. Therefore, with the proposed framework, a
win-win strategy was designed for both users and the VPP
in smart grids.

In the proposed framework, the decisions of the users
to sell energy surplus to the internal market are based on
the present information, which is the states of the storage
devices and the renewable energy production. If the users
obtain favorable forecasting and learning abilities, they can
potentially have higher revenue. Specifically, machine learn-
ing methods can be employed to forecast weather conditions
and determine the best bidding strategies for the users.
For the energy trading, the VPP must verify that the users
selling energy surplus to the internal market should obtain
this amount of energy in the storage devices. However,
the VPP cannot directly access the storage devices of the
users due to the privacy issues. To this end, zero-knowledge
proofs from cryptography can be employed.
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