
	 MONTH/MONTH 2023 | IEEE SOFTWARE� 45

FOCUS: GUEST EDITORS’ INTRODUCTION

Digital Object Identifier 10.1109/MS.2023.3330021
Date of current version: 20 December 2023

Yan Liu and Abdelwahab Hamou-Lhadj ,
Concordia University

Jiye Li , Thales Research et Technologie

Qinghua Lu , Data61

Observability
and Explainability
for Software Systems
Decision Making

0 7 4 0 - 7 4 5 9 / 2 3 © 2 0 2 3 I E E E 	 JANUARY/FEBRUARY 2024 | IEEE SOFTWARE � 45

https://orcid.org/0000-0002-6747-8151
https://orcid.org/0000-0002-3319-5006
https://orcid.org/0000-0001-7360-9720
https://orcid.org/0000-0002-7783-5183

46	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

SOFTWARE SYSTEMS ARE grow-
ing into complex systems under
expanding adoptions of the digiti-
zation of services, operations, and
products in a wide range of domains.
It becomes common that software
systems operate at the scale of sev-
eral data centers, hundreds of mi-
croservices, thousands of queries
per second, millions to hundreds of
millions of telemetry time series,
and double-digit percent growth
monthly as the business grows. In-
evitably, software complexity is
of high dimensions and of a large
scale in almost every dimension.
Decision making for such a com-
plex software system is facing the
constraints of bounded rationality,
including factors of uncertainty,
opacity, time limitation, and incom-
plete information, to ensure success-
ful development, deployment, and
maintenance.1 Therefore, the de-
cision is often of a satisfactory op-
tion rather than the best or optimal
one. On one hand, bounded ratio-
nality can lead to suboptimal deci-
sions, degraded quality, delays, and
cost overruns.2 On the other hand,
bounded rationality also fosters op-
portunities to design processes, ar-
chitectures, and tools to enhance
decision making.3

Factors of Decision
Making in Complex
Software Systems
One of the principles for tackling a
complex system, such as a biochemi-
cal reaction system, is to obtain ob-
servability.4 Observability means
the ability to reconstruct a system’s
internal state from its outputs (see
“Observability and Monitoring”).
Along with the advancement of
technologies on big data storage and
processing, massive events, data,
and telemetry in both structured
and informal formats have been
produced and accumulated through
the lifecycle of software systems.
These data contain comprehensive
and valuable information captur-
ing details on relating the internal
states to certain behaviors of a soft-
ware system. The opportunity is on
the pathway of combining artificial
intelligence (AI), machine learning,
and data-mining techniques to han-
dle real-world uncertainties and im-
prove decision making for complex
software systems.

While observability generally un-
dertakes the transparent “white-box”
approach, explainability relates in
puts and outputs and approximates
systems as “black box” in a post
hoc manner. In a software system

with an AI core, explainability has
become one of the pillars for trust-
worthy AI to alleviate users’ skepti-
cism, strengthen trust, and promote
uptake. Explainable AI is the emerg-
ing near-consensus among academ-
ics, industries, governments, and
civil society groups for developing
responsible AI.5 More broadly, ex-
plainability (see “Explainability”)
has been establishing itself as an
important nonfunctional require-
ment in the context of software
systems with complexity and hid-
den uncertainties.6 For example,
in the domain of digital twins,
simulat ion models become soft-
ware services that are invoked to
compose pipelines for various engi-
neering processes. Under the cir-
cumstances that the digital system
behavior deviates from the physi-
cal system’s standards, users re-
quire an explanation of the services
for the purpose of mission and qual-
ity control.

Future Directions
Observability sustains the in-time,
continuous, and configurable re-
construction of the internal states
of software systems at varying de-
grees of granularity across a sys-
tem. Explainability focuses on the
approximation of the system’s be-
havior relating to inputs and chosen
outputs. Observability and explain-
ability each line up inimitable views
on the transparency of software sys-
tems. Their synergy addresses not
only data-driven solutions but also
paves a path to achieve broader mis-
sions in software systems, including
but not limited to tracing the cau-
sality, accountable decision making,
automation, and self-organization
as well as collaborative intelligence
among humans, software systems,
and large-scale machine learning.

OBSERVABILITY AND
MONITORING
Observability and monitoring both aim to provide insights into the behavior of a
system, but they perform in different ways. Monitoring is the task of collecting,
analyzing, and using metrics to track a system’s progress. Observability is the
ability to trace and relate the internal states to behaviors by analyzing the data
generated, such as logs, metrics, and traces, across complex and distributed en-
vironments. An observable system helps teams understand what is happening to
detect and resolve the underlying causes of issues.

	 JANUARY/FEBRUARY 2024 | IEEE SOFTWARE� 47

In fact, synergizing observability
and explainability is not an easy
task, as there are many challenges
involved. Moving forward, possible
questions are presented to motivate
further exploration in depth and
in breadth.

Harnessing the power of observ-
ability and explainability benefits
reliable and cost-effective decision
making in the software develop-
ment lifecycle.

•	 Defining and measuring ob-
servability and explainability:
There is no concise definition
of observability or explain-
ability. Different software
systems may have different re-
quirements and criteria for ob-
servability and explainability.
What are the common features
of observability and explain-
ability applicable across
domains? What are the best
practices to measure them?

•	 Balancing trade-offs with
other quality objectives:
Observability and explain-
ability may have competing
objectives to each other and
to other quality attributes,
such as accuracy, scalability,
security, privacy, efficiency,
usability, and so on. For ex-
ample, increasing the amount
of data collected may help
improve the system’s observ-
ability and provide more
detailed explanations for the
system’s decision, but it may
also incur more complexity,
overhead, delays, complex-
ity, and vulnerable risks. How
can we evaluate the tradeoff
of observability and explain-
ability versus other quality
objectives? How can we struc-
ture and order data according

to the priority of quality
objectives?

•	 Designing architecture for
interactions and feedback: A
complex system often forms a
hierarchy of system and sub-
systems. Interactions among
parts at lower levels raise the
order of emergence at the
higher level without a central-
ized control. In real-world
applications, this may pose
the demand of understandable
explanation and observability
both on a per-device basis and
at the aggregation points. In
addition, in a system involv-
ing intelligence computing,
feedback from the environment
and people is cardinal to form
chains or loops for causal-
ity analysis, error correction,
and improved accuracy. What
are the architecture styles for
structuring observable com-
ponents and feedback chains
or loops at various level of a
software system? What are the
best practices of architecting
compositions for observability
or explainability?

A Road Map of the
Special Issue Articles
In this special issue, we begin with
a summary of interv iews with
three specialists who are leading

industry observability solutions in
the production environment. This
interview articleA1 outlines the key
challenges and major objectives of
industry practices on observabil-
ity and explainability. It provides
a high-level background for under-
standing the features of observabil-
ity and explainability. “Explaining
Cyberphysical System Behavior
With Digital Twins”A2 presents
a model-driven architecture that
combines essential components for
the explanation of decision making
in complex digital twin systems.
It shows a starting point of com-
bining domain models, expertise,
process, and explainability from
established model-driven engineer-
ing principles. “Focusing on What
Matters: Explaining Quality Trad-
eoffs in Software-Intensive Systems
via Dimensionality Reduction”A3
presents an architectural approach
to explaining the tradeoffs of qual-
ity attributes of high dimensional-
ity in software-intensive systems.
The explanation is the result of com-
bined analysis of dimension-reduc-
tion components.

Furthermore, a vision is depicted
in “Explainability With Observa-
tion Sharing in Long Collaboration
Chains of Automated Systems of
Systems”A4 on how observation is
shared in the domain of automated
long chains of collaboration with

Explainability, in the context of decision making in software systems, refers to
the ability to provide clear and understandable reasons behind the decisions,
recommendation, and predictions made by the software. Explainability is important
for trustworthy interaction with a software system, especially when complex or
intelligent algorithms are involved.

EXPLAINABILITY

48	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

robotics. The linkages between
architecture essentials and observable
components are well outlined to mo-
tivate readers to consider integrated
architecture solutions with explain-
ability and observability included.
Specifically, “Explaining Black Boxes
With a SMILE: Statistical Model-
Agnostic Interpretability With Lo-
cal Explanations”A5 drills into the
property of the explainability of
AI models by evaluating how dif-
ferent explanation models react to
mutated features. In particular, the

article discusses the importance of
the stability and trustworthiness
of expla inable A I models and
showcases scenarios with human
intuition and that are resilient to ad-
versarial attack.

O verall, the articles in this
special issue cover the pro
perties of explainability,

architecture essentials, and observ-
able components. The challenges and
directions for adoption in practice

advocate for continuous effort under
this emerging topic.

Acknowledgments
This special issue benefits from the
high-quality submissions we received
for this theme issue. We express our
sincere appreciation to the authors
and reviewers for sharing their con-
tributions and expertise. We are also
grateful to Editor in Chief Dr. Ipek
Ozkaya and the IEEE Software team
for their support and guidance. Yan
Liu and Abdelwahab Hamou-Lhadj
are supported by the Natural Sci-
ences and Engineering Research
Council of Canada Discovery Grants
(individual) program.

Appendix: Related Articles
	A1.	I. Gorton, L. Fong-Jones, and A.

Larsson, “Observability Q&A,”

IEEE Softw., vol. 41, no. 1,

pp. 50–54, Jan./Feb. 2024, doi:

10.1109/MS.2023.3330234.

	A2.	J. Michael, M. Schwammberger,

and A. Wortmann, “Explaining

cyberphysical system behavior with

digital twins,” IEEE Softw., vol. 41,

no. 1, pp. 55–63, Jan./Feb. 2024,

doi: 10.1109/MS.2023.3319580.

	A3.	J. Cámara, R. Wohlrab, D. Garlan,

and B. Schmerl, “Focusing on what

matters: Explaining quality trad-

eoffs in software-intensive systems

via dimensionality reduction,”

IEEE Softw., vol. 41, no. 1, pp.

64–73, Jan./Feb. 2024, doi: 10.1109/

MS.2023.3320689.

	A4.	P. Daubaris et al., “Explainability

with observation sharing in long

collaboration chains of automated

systems of systems,” IEEE Softw.,

vol. 41, no. 1, pp. 74–86, Jan./Feb.

2024, doi: 10.1109/MS.2023.

3320742.

A5. K. Aslansefat, M. Hashemian, M.

Walker, M. N. Akram, I. Sorokos,

and Y. Papadopoulos, “Explaining

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

YAN LIU is a tenured associate professor at Concordia Univer-

sity, Montreal, QC H3G 1M8, Canada. Contact her at yan.liu@

concordia.ca.

ABDELWAHAB HAMOU-LHADJ is a professor at Concordia

University, Montreal, QC H3G 1M8, Canada. Contact him at

wahab.hamou-lhadj@concordia.ca.

JIYE LI is a research and technology lead at Thales Research

et Technologie, Québec, QC G1P 4P5, Canada. Contact her at

jiye.li@thalesgroup.com.

QINGHUA LU is a principal research scientist, Data61,

Alexandria, NSW 1435, Australia. Contact her at qinghua.lu@

csiro.au.

mailto:yan.liu@concordia.ca
mailto:yan.liu@concordia.ca
mailto:/wahab.hamou-lhadj@concordia.ca
mailto:jiye.li@thalesgroup.com
mailto:qinghua.lu@csiro.au
mailto:qinghua.lu@csiro.au

	 JANUARY/FEBRUARY 2024 | IEEE SOFTWARE� 49

black boxes with a SMILE:

Statistical model-agnostic interpret-

ability with local explanations,”

IEEE Softw., vol. 41, no. 1,

pp. 87–97, Jan./Feb. 2024, doi:

10.1109/MS.2023.3321282.

References
1.	L. Chazette, W. Brunotte, and

T. Speith, “Explainable software sys-

tems: From requirements

analysis to system evaluation,” Re-

quirements Eng., vol. 27,

no. 4, pp. 457–487, 2022, doi:

10.1007/s00766-022-00393-5.

2.	H.-M. Chen and R. Kazman,

“Architecting ultra-large-scale

green information systems,” in

Proc. 1st Int. Workshop Green

Sustain. Softw. (GREENS),

2012, pp. 69–75, doi: 10.1109/

GREENS.2012.6224259.

3.	L. H. Gilpin, D. Bau, B. Z. Yuan,

A. Bajwa, M. Specter, and L. Ka-

gal, “Explaining explanations:

An overview of interpretability of

machine learning,” in Proc. IEEE 5th

Int. Conf. Data Sci. Adv. Analyt-

ics (DSAA), 2018, pp. 80–89, doi:

10.1109/DSAA.2018.00018.

4.	T. Huang, G. Allon, and A. Bassam-

boo, “Bounded rationality in service

systems,” Manuf. Service

Operations Manage., vol. 15, no. 2,

pp. 263–279, 2013, doi: 10.1287/

msom.1120.0417.

5.	Y.-Y. Liu, J.-J. Slotine, and A.-L.

Barabási, “Observability of complex

systems,” Proc. Nat. Acad. Sci. USA,

vol. 110, no. 7, pp. 2460–2465, 2013,

doi: 10.1073/pnas.1215508110.

6.	C. Smith, C. Babich, and M. Lubrick,

Leadership and Management in

Learning Organizations. Toronto,

ON, Canada: eCampusOntario, 2022.

Write for the IEEE Computer
Society’s authoritative

computing publications
and conferences.

GET PUBLISHED
www.computer.org/cfp

IEEE COMPUTER SOCIETY

Call for Papers

Digital Object Identifier 10.1109/MS.2023.3334609

	045_41ms01-guesteditorial-3330021

