
32 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

The Future
of Software
Engineering
Forrest Shull and Anita Carleton, Software Engineering Institute

Jeromy Carriere, Google

Rafael Prikladnicki, Pontificia Universidade Catolica
do Rio Grande do Sul

Dongmei Zhang, Microsoft Research

THIS YEAR MARKS the 50th anni-
versary of the Turing Award, which
was first given to Alan Perlis, an
oft-quoted mathematician who de-
scribed the relationship between hu-
mans and computers as having “a
vitality like a gangly youth growing
out of his clothes within an endless
puberty.”1 Now that our dependence
on software permeates nearly every
aspect of our lives, it’s time to ask
ourselves where this relationship is
headed and, even though software
engineering is still a relatively new
discipline, how much we’ve matured.

In many ways, we seem ready
to take a seat at the grown-up ta-
ble as discussions in our commu-
nity increasingly revolve around the

FOCUS: GUEST EDITORS’ INTRODUCTION

 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 33

immediate, concrete concerns of af-
fordability, dependability, privacy,
and security. And there’s plenty to
talk about: recent headlines trumpet
software flaws as causing airspace
closures, credit card data theft, car
and plane malfunctions, unreach-
able 911 centers, and billions of dol-
lars of wasted taxpayer money. Fur-
thermore, as the New York Times
editorial “Volkswagen and the Era
of Cheating Software” reminded us,
accidental functionality shouldn’t be
the only concern keeping us up at
night.2 “Smart” objects can use soft-
ware to cheat and lie, and objects are
getting smarter all the time.

A Cause for Optimism
Yet in the face of a sometimes grim
litany of software concerns, we’re
happy to report that our field retains
at least a bit of the starry-eyed opti-
mism of youth. This issue’s call for
papers generated widespread interest
and resulted in twice the submissions
as for any previous special issue. We
believe the community’s enthusiasm
is as well-founded as its angst. Soft-
ware already prevents car collisions,
helps fight human trafficking and
predict genocide, enables electronic
prescriptions and health records
that save thousands of lives, and has
changed how doctors perform life-
saving surgeries. Although software
makes the biggest splash in the news
when things go wrong, it’s important
to consider not just software’s prob-
lems but also its promise and the ca-
pabilities it will provide in the future.
In addition, we need to consider how
our jobs as software engineers are
transforming along with the services
that software makes possible.

In many ways, this special issue
is the product of a robust, engaged
community, with record numbers
of people taking the time to provide

content or review submissions. We
regret we could publish only a frac-
tion of the submissions, because they
all help illuminate the path forward.
They touched on almost every as-
pect of our profession, ranging from
ideas for rethinking education and
training new software developers to
new programming paradigms that
might change how developers think
about the functionalities they’re
implementing. With the help of the
peer reviewers, we’ve tried to select
the best of the best for you.

Perhaps most interesting was the
number of submissions focusing on
requirements, two of which we’ve in-
cluded. Although requirements might
seem slightly unexpected to be listed
as one of the areas that will most im-
pact our field’s future, it reminds us
that humans still drive this relation-
ship. As Perlis said, “The most impor-
tant computer is the one that rages in
our skulls and ever seeks that satis-
factory external emulator.”1 Despite
the plethora of fascinating techno-
logical areas in which breakthroughs
might radically change our day-to-
day practice, the common theme re-
mains that humans are still the focus.
That includes both the human users
of these technological breakthroughs
and the human users of the new soft-
ware systems that become possible.
As ever, effectively managing these
relationships requires diverse views
so that our systems don’t emulate the
minds of only a few.

In such a forward-looking field,
it’s not surprising that this issue is
one of many views on where our
field is headed. We recommend plac-
ing the visions on these pages against
those provided in other forums for
an interesting opportunity to com-
pare and contrast. For example,
the Future of Software Engineer-
ing track at the 2014 International

Conference on Software Engineer-
ing (http://2014.icse-conferences.org
/fose) featured roadmaps predict-
ing the path forward for areas that
have already proven their worth. It
also looked at technologies being re-
searched and developed that might
have outsize importance in the fu-
ture, such as automated deduction,
probabilistic programming, and the
use of massive open online courses to
help software education scale. IEEE
Spectrum compiled its own thought-
ful set of roadmaps regarding tech-
nologies from all fields that will
change the future;3 it’s instructive to
see in how many cases software pro-
vides key capabilities. And for an ac-
cessible view of the future, informed
by decades of experience, it’s hard
to beat IEEE Software’s department
editor Grady Booch.4 Grady’s talks
are always helpful reminders that
we, as software engineering profes-
sionals, play a fundamental role in
the advancement of the human spirit,
encompassing war, commerce, the
arts, science, society, and faith.

We hope this special issue, by fo-
cusing on the intersection between
software engineering research and
practice, adds to the dialog and pro-
vides thought-provoking and perhaps
inspirational ideas about where we’re
headed. Although we work in a fast-
moving field and often have to keep
focused on the day-to-day necessi-
ties, it’s important to look at today’s
trends and imagine where they might
lead. If you feel we missed the mark,
maybe it’s not so much that we as a
community aren’t that good at pre-
dicting the future but that we haven’t
yet agreed on how we want it to look.
Remember, as Perlis said, “In soft-
ware systems it is often the early bird
that makes the worm.”1 We need to
ask ourselves not only what we’re
able to make and do but also whether

34 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

what we’re making is contributing to
the future we want to see.

The Articles
In this issue you’ll � nd a range of per-
spectives from professionals working
around the world in diverse areas of
software. The content ranges from
detailed technical articles about the
research areas behind today’s trends
to shorter essays and opinion pieces
from folks working to sharpen the fo-
cus of their own visions of the future.

From the US, we offer thought-
ful essays from key people who have
helped build organizations that are
playing important roles in build-
ing the software discipline: Andrew
Moore (formerly at Google and now
at Carnegie Mellon University), Tim
O’Reilly (O’Reilly Media and Code
for America), and Paul Nielsen and
Kevin Fall (both at the Software En-
gineering Institute, the only US fed-
erally funded R&D center focusing
on software).

Given software development’s in-
creasingly global nature, we’ve in-
cluded contributions from outside
the US. In the Perspectives—China
department, four chief technology
of� cers discuss the software in-
dustry’s fast growth in China and
their frontline experiences leading
software development for massive
systems and services in some of the
fastest-growing Chinese companies.
In the Perspectives—Brazil depart-
ment, three executives from Thought-
Works, a global company focusing
on software design and delivery, give
insights on the importance of the
human side of software engineering
and of transparency, emergence, and
sustainable development for soft-
ware engineering’s future.

The six peer-reviewed articles ex-
plore innovative software practices
and tools in use today and envision

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

FORREST SHULL is the assistant director for empirical

research at Carnegie Mellon University’s Software Engineer-

ing Institute, where he leads work to advance the use of

empirically grounded information in software engineering,

cybersecurity, and emerging technologies. Shull received a

PhD in computer science from the University of Maryland.

He’s editor in chief emeritus of IEEE Software. Contact him at

fjshull@sei.cmu.edu.

ANITA CARLETON is the deputy director of the Software En-

gineering Institute’s Software Solutions Division. She provides

leadership for the research, development, and transition of

methods and technologies that encapsulate best practices for

software engineering, management, and measurement at the

nation’s only federally funded R&D center focused on tackling

the most challenging software-related issues. She is an IEEE

Senior Member and serves on the IEEE Software advisory

board. Contact her at adc@sei.cmu.edu.

JEROMY CARRIERE is an engineering director at Google.

His research interests are large-scale distributed systems,

software architecture, and software engineering management.

Carriere earned his bachelor of mathematics in computer

science from the University of Waterloo. Contact him at

 jcarriere@google.com.

RAFAEL PRIKLADNICKI is an associate professor in the

Computer Science School at Ponti� cia Universidade Catolica

do Rio Grande do Sul (PUCRS) and the director of the univer-

sity’s Science and Technology Park (Tecnopuc). His research

interests include distributed and agile software development.

Prikladnicki received a PhD in computer science from PUCRS.

He’s on the IEEE Software editorial board. Contact him at

rafaelp@pucrs.br.

DONGMEI ZHANG is a principal researcher and research

manager at Microsoft. Her research interests are software

analytics, machine learning, and information visualization.

Zhang received a PhD in robotics from Carnegie Mellon Univer-

sity. Contact her at dongmeiz@microsoft.com.

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 35

how they might evolve. In “Toward
Data-Driven Requirements Engi-
neering,” Walid Maalej and his col-
leagues consider the implications
that the enormous volume of un-
structured data generated through
our digital interactions might have
on requirements engineering. Us-
ers submit feedback in app stores,
social media, and user groups,
while software vendors gather mas-
sive amounts of implicit feedback
through usage data. Can all this data
lead to requirements engineering “by
the masses, for the masses”?

In “Requirements: The Key to
Sustainability,” Christoph Becker
and his colleagues approach require-
ments from another angle. As the
line between software systems and
socioeconomic and natural systems
blurs, software systems in� uence
aspects of our lives such as how we
form relationships, how we travel,
and what we buy. In this context,
what does it mean to be responsible
for the consequences of the software
we design, and how can we establish
sustainability as a major concern?

In “Reducing Friction in Soft-
ware Development,” Paris Avgeriou
and his colleagues posit that we’re
producing software at such a rate
that its growth hinders its sustain-
ability. As technical debt becomes
a dominant driver of progress, can
we get ahead of the software quality
and innovation curve by establishing
technical-debt management as a core
software engineering practice?

In “Crowdsourcing in Software
Engineering: Models, Motivations,
and Challenges,” Thomas LaToza
and André van der Hoek explore
current crowdsourcing models and
the challenges that must be met be-
fore those models can reach their full
potential. Will crowdsourcing lead
to fundamental, disruptive changes

in how we develop software?
In “Speed, Data, and Ecosys-

tems: The Future of Software En-
gineering,” Jan Bosch also looks at
trends in industry and society that
have shaped software engineering
recently. He focuses on three key
trends—speed, data, and ecosys-
tems—and their implications for
software engineering’s future.

Big data also plays a role in James
Herbsleb and his colleagues’ article,
“Intelligently Transparent Software
Ecosystems.” As the software in-
dustry relies increasingly on open
libraries, frameworks, and code
fragments, can we create an infra-
structure that achieves “intelligent
transparency” by applying analytics
to data from open source projects to
bring stakeholders the information
they need when they need it?

In this issue’s Voice of Evidence
column, Emily Hill, Philip Johnson,
and Daniel Port share evidence about
an “athletic” approach to software
engineering education. They argue
that, because of all these new tech-
nologies and new uses of software,
we’ll have to teach software engineer-
ing differently, and we should study
which approaches can be effective.

Finally, in the Sounding Board
department, George Hurlburt and
Jeff Voas present an opinion piece on
their vision of software engineering’s
future. Their idea of software engi-
neering (whether an art or a science)
morphing into “virtual philosophy”
is sure to elicit reactions and gener-
ate discussion. We look forward to
seeing what results.

T he task we set for ourselves
in this issue—presenting vi-
sions of our discipline’s pos-

sible future—was challenging and
exciting. We hope you’ll be similarly

inspired by what we’ve collected. Al-
though we’re sure that many of the
details will be off the mark, we hope
the visions in this issue inspire ac-
tion—perhaps to learn more about
a new technology that seems like a
promising component for the hot ca-
reers of the future. Maybe even to
build new capabilities or volunteer
for an organization that uses soft-
ware to build new capabilities, such
as Code for America. But above all,
to think and discuss the future we’re
building together.

Acknowledgments
We wish to express our extraordinary

gratitude to Erin Harper, who made im-

portant contributions to several aspects of

this special issue, including this introduc-

tion. Her work on the original proposal

and the call for papers had a large impact

on the � nal product.

References
 1. A. Perlis, “Epigrams on Program-

ming,” SIGPLAN Notices, vol. 17,

no. 9, 1982, pp. 7–13.

 2. Z. Tufekci, “Volkswagen and the Era

of Cheating Software,” New York

Times, 23 Sept. 2015; www.nytimes

.com/2015/09/24/opinion/volkswagen

-and-the-era-of-cheating-software

.html?_r=0.

 3. “The Future We Deserve, IEEE Spec-

trum, 2015; http://spectrum.ieee.org

/static/the-future-we-deserve.

 4. G. Booch, “ICSE 2015—Grady

Booch Keynote” (video), 2015; www

.youtube.com/watch?v=h1TGJJ-F-fE.

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

