Since complex Unix tools are built from simple, single-function
components, programmers see their work as the creation and use of
tools. This view encourages growth, not reinvention.

The Unix
Programming
Environment

Brian W. Kernighan
Bell Laboratories, Murray Hill, N.J.

John R. Mashey
Bell Laboratories, Whippany, N.J.

“Software stands between the user and the machine.”’

—Harlan D. Mills

There is more than a grain of truth in this remark.
Many operating systems do some things well, but seem to
spend a substantial fraction of their resources interfering
with their users. They are often clumsy and awkward, pre-
senting major obstacles to getting a job done.

Things needn’t be that way. For over eight years, we
have used the Unix* operating system! and have found it
helpful, productive, and a pleasure to use.

We are not the only ones who feel this way. Although
the basic Unix system was literally developed in a year by
two people working in an attic, and has, until recently,
been available only as an unsupported package, the
benefits it provides are so compelling that over 2500 Unix
systems are now in place around the world. At Bell Labor-
atories, Unix systems provide more timesharing ports
than all other systems combined. These ports are accessed
by thousands of people; many use them on a daily basis.
Unix has spawned a host of offshoots—at least six com-
paniest offer or plan to offer systems derived from or
compatible with the Unix system, for processors ranging
from microprocessors to large mainframes.

In this article we describe what appears to be a new way
of computing. We emphasize those things that are unique,
particularly well done, or especially good for productivity.

*Unix is a trademark of Bell Laboratories.
ftCromemco, Onyx, Yourdon, Whitesmiths, Amdahl, and Wollongong
Group.

This paper is adapted from ‘“The UNIX Programming Environment,”” by
Brian W. Kernighan and John R. Mashey, originally published in Soft-
ware— Practice & Experience, Vol. 9, No. 1, Jan. 1979, and reproduced by
permission of the editors and the publishers, John Wiley & Sons.

. 0018-9162/81/0400-0012800.75 © 1981 IEEE

We also discuss aspects of the system that have changed
our view of the programming process itself and draw
some lessons that may be valuable to future implementors
of operating systems.

Neither of us was involved with the development of the
Unix system, although we have contributed applications
software. We describe the system from the user’s view-
point, based on our own experiences and those of the
large community of users with whom we have been in-
volved. This is a valid perspective because good systems
have many more users than developers. (A developer’s
retrospective can be found in Ritchie.?)

File system and input/output

File system structure. As any operating system should,
Unix provides facilities for running programs and a file
system for managing information. The basic structure of
the file system is fairly conventional—there is a rooted
tree in which each interior node is a directory (that is, a list
of files and directories), and each leaf is either a file or a
directory (see Figure 1). Any file can be accessed by its
name, either relative to the current directory or by a full
path name that specifies its absolute position in the hierar-
chy. Users can change their current directory to any posi-
tion in the hierarchy. A protection mechanism prevents
unauthorized access to files.

Several design choices increase the uniformity of the
file system by minimizing irrelevant distinctions and arbi-
trary special cases. These choices permit programs that
access the file system to be substantially simpler and
smaller than they would be if this regularity were absent.

First, directories are files. The only distinction between
a directory and an ordinary file is that the system reserves
to itself the right to alter the contents of a directory. This

COMPUTER

is necessary because directories contain information
about the physical structure of the file system. Since direc-
tories are files, they can be read (subject to the normal
permission mechanism) just as ordinary files can. This
implies that programs such as the directory lister are in no
sense special. They read information that has a particular
format, but they are not system programs.

In many systems, programs like directory listers are
believed to be (and often are) part of the operating sys-
tem. In the Unix system, they are not. One of the distin-
guishing characteristics of Unix is the degree to which this
and similar ‘‘system’’ functions are implemented as or-
dinary user programs. This approach has significant
benefits: it reduces the number of programs that must be
maintained by system programmers, it makes modifica-
tion easier and safer, and it increases the probability that a
dissatisfied user will rewrite (and perhaps improve) the
program.

The next aspect of the file system is critical: a file is just
asequence of bytes. As far as the file system is concerned,

a file has no internal structure; it is a featureless, contigu-

ous array of bytes. In fact, a file is better described by the
attributes it lacks.

® There are no tracks or cylinders; the system conceals
the physical characteristics of devices instead of
flaunting them.

® There are no physical or logical records or associated
counts; the only bytes in a file are the ones put there
by the user.

® Since there are no records, there is no fixed/variable
length distinction and no blocking.

® There is no preallocation of file space; a file is as big
as it needs to be. If another byte is written at the end
of a file, the file is one byte bigger.

® There is no distinction between random and sequen-
tial access; the bytes of a file are accessible in any
order.

® There are neither file types for different kinds of data
nor any access methods; all files are identical in
form.

® There is no user-controlled buffering; the system
buffers all I/0 itself.

Although these may seem like grave deficiencies, in fact
they are major contributions to the effectiveness of the
system. The file system strives to hide the idiosyncrasies of
particular devices upon which files reside, so all files can
look alike.

It should not be inferred from the foregoing that files
do not have structure. Certain programs do write data in
particular forms for the benefit of people or other pro-
grams. For example, the assembler creates object files in
the form expected by the loader, the system itself uses a

well-defined layout for the contents of a directory, and |

most programs that manipulate textual information treat
it as a stream of characters with each line terminated by a
newline character. But these structures are imposed by the
programs, not by the operating system.

Programming interface. Seven functions comprise the
programmer’s primary interface to the file system:
OPEN, CREATE, READ, WRITE, SEEK, CLOSE, and

April 1981

UNLINK. These functions are direct entries into the
operating system.
To access a file, OPEN or CREATE must be used:

FD = OPEN(FILENAME, MODE)
FD = CREATE(FILENAME, MODE)

OPEN opens FILENAME for reading, writing, or both,
depending on mode. FILENAME is simply the name of
the file in the file system—a string of characters.
CREATE also opens a file, but truncates it to zero length
for rewriting, in case it already exists. It does not com-
plain if the file already exists.

Both OPEN and CREATE return a file descriptor, a
small positive integer that serves thereafter as the connec-
tion between the file and I/0 calls in the program. (A neg-
ative return indicates an error of some sort.) The file
descriptor is the only connection; there are no data con-
trol blocks in the user’s address space.

Actual input and output are done with READ and
WRITE.

N_RECEIVED = READ(FD, BUF, N)
N_WRITTEN = WRITE(FD, BUF, N)

Both calls request the transfer of N bytes to or from the
buffer BUF in the user’s program from or to the file speci-
fied by FD; N can have any positive value.

Both READ and WRITE return the number of bytes
actually transferred. This can be less than N, when, for
example, the system reads a file whose size is not a mul-
tiple of N bytes. A return of zero on reading signals the
end of file.

As far as a user program is concerned, input and output
are synchronous and take place in chunks of whatever size
is requested. The system handles buffering and blocking
into proper sizes for physical devices. Not only does this
simplify user programs, it converts the haphazard subop-
timizations of individual user programs into global opti-
mization across the entire set of active programs. For ex-
ample, the system handles queues of disk requests so that
disk head motion and rotational delays are minimized. In
many applications, this approach actually improves disk
performance, which is often more critical than CPU per-
formance. Such global optimization aids adaptation to
both changes in disk configuration and the increasingly
common use of larger, but fewer, disks per system. -

I/0 is normally sequential, that is, each command con-
tinues where the preceding one left off. This default may
be changed by the call SEEK.

SEEK(FD, POSITION, RELATIVE_TO)

-Figure 1. File system hierarchy.

13

This requests that the pointer for the next read or write be
set to the byte specified by POSITION, relative to the
beginning, current position, or end as specified by RELA-
TIVE_TO. Thus, SEEK provides a convenient random
access capability.

Finally, the function CLOSE(FD) breaks the connec-
tion between a file descriptor and an open file;
UNLINK(NAME) removes the file from the file system.

Given this interface, many programs become simple in-
deed. For example, here is the executable part of a pro-
gram COPY that copies one file to another, written in the
C programming language.*

FIN = OPEN(NAMEI1, READMODE);

FOUT = CREATE(NAME2, WRITEMODE);

WHILE ((N = READ(FIN, BUF, SIZEOF BUF) >0)
WRITE(FOUT, BUF, N);

The buffer BUF may be of any convenient size. The file
names NAME1 and NAME?2 are character strings, typi-
cally set from the command line when the program is exe-
cuted. Another half-dozen lines of declarations make this
into a complete program that will copy any file to any
other file.

Input/output devices. The interface described above
applies to all files. This goes further than might be expect-
ed, for all peripheral devices are also files in the file sys-
tem. Disks, tapes, terminals, communications links, the
memory, and the telephone system all have entries in the
file system. When a program tries to open one, however,
the system brings into execution the proper driver for the
device, and subsequent I/0 goes through that driver. The
1/0 device files all reside in one directory for convenient
administration, and they can be distingyished from ordi-
nary files by the rare programs that need to do so. In gen-
eral, however, considerations specific to particular de-
vices are pushed out into the device drivers where they be-
long, and user programs need know nothing about them.
The file system conceals the physical peculiarities of de-
vices instead of making them visible.

From the programmer’s standpoint, the homogeneity
of files and peripheral devices is a considerable simplifica-
tion. For example, the file copy program COPY that we
wrote in the previous section could be invoked as

COPY FILE! FILE2

to copy the contents of FILE1 to FILE2. But the files can
be devices, so

COPY /DEVICE/TAPE /DEVICE/PRINTER
copies the magnetic tape onto the printer, and
COPY/DEVICE/PHONE/DEVICE/TERMINAL

reads data from the telephone onto a user’s terminal. The
program copy is in all cases identical to the four lines of C
we wrote above. The COPY program need not concern
itself with any special characteristics of files, tape drives,
printers, terminals, or telephones, for these are all con-
cealed by the system. COPY only has to copy data, and
accordingly is much simpler than it would be if it had to
cope with a host of different devices and file types. It is
also much simpler to have one COPY program instead of

a host of different “‘utility’’ programs corresponding to
the host of different possible copying operations.

As another instance of the value of integrating 1/0 de-
vices into the file system, interuser communication by the
WRITE command is trivial. Since a user’s terminal is a
file, no special mechanism is needed to write on it. Un-
wanted messages can be prevented merely by changing the
permissions on the terminal, to make it impossible for
others to write on it.

Simplicity is achieved by the elimination of special
cases, such as discrimination between devices and files.

The user interface

Running programs. When a user logs into a Unix
system, a command interpreter called the shell> accepts
commands from the terminal and interprets them as re-
quests to run programs. The form is as suggested above: a
program name, perhaps followed by a list of blank-sepa-
rated arguments that are made available to the program.
For example, the command

DATE
prints ,
WED OCT 29 09:45:24 EST 1980

The program name is simply the name of a file in the file
system,; if the file exists and is executable, it is loaded as a
program. There is no distinction between a ‘‘system’’
program like DATE and one written by an ordinary user
for private use, except that system programs reside in a
known place for administrative convenience. Commonly
used programs such as DATE are kept in one or two direc-
tories, and the shell searches these directories if it fails to
find the program in the user’s own directory. (It is even
possible to replace the shell’s default search path with
one’s own.) Installing a new program requires only copy-
ing it into this directory:

COPY COPY /COMMAND/COPY

installs copy from the current directory as the new system
version in /COMMAND.

Filename shorthand. A typical Unix system lives and
breathes with file system activity. Most users tend to have
a large number of small files; the Bell Labs system used
for computing science research, for example, has about
45,000 files for about 50 active users; the average file size
is about 10,000 bytes, but the median is much smaller.

Most programs accept a list of file names as param-
eters; lists are often quite long. For example, here is a
listing of a directory.

ADDSET.C TEMP1
COMMON TEMP2
DODASH.C TEMP3
ESC.C TEMP4
FILSET.C TEMPS
GETCODE TRANSLIT.C
MAKSET.C XINDEX.C
TEMP XLATE.A

COMPUTER

The names that end in .C are C source programs (a con-
vention, not a requirement of the operating system). To
print all these files with the command PR, one could say

PR ADDSET.C DODASH.C ESC.C FILSET.C
MAKSET.C TRANSLIT.C XINDEX.C

but this is obviously a nuisance and impossible to get right
the first time. The shell, however, provides a shorthand.
In the command

PR *.C

the character * is interpreted by the shell as ‘‘match any-
thing.”’ The current directory is searched for names that
(in this case) end in .C, and the expanded list of names is
handed to PR; PR is unaware of the expansion.

The shell also recognizes other pattern-matching
characters, less frequently used than *. For example,

RM TEMP[1-5]

removes TEMP1 through TEMPS5 but does not touch
TEMP.

Filename shorthand isinvaluable. It greatly reduces the
number of errors in which a long list is botched or a name
omitted, it encourages systematic naming of files, and it
makes it possible to process sets of files as easily as single
ones. Incorporating the mechanism into the shell is more
efficient than duplicating it everywhere and ensures that it
is gvailable to all programs in a uniform way.

Input/output redirection. As we mentioned earlier, the
user’s terminal is just another file in the file system. Ter-
minal I/0 is so common, however, that by convention the
command interpreter opens file descriptors 0 and 1 for
reading and writing the user’s terminal before executing a
program. In this way, a program that intends only to read
and write the terminal need not use OPEN or CLOSE.

The command interpreter can also be instructed to
change the assignment of input or output to a file before
executing a program.

PROGRAM <IN >0UT

instructs the shell to arrange that PROGRAM take its in-
put from IN and place its output on OUT; PROGRAM
itself is unaware of the change.

The program LS produces a listing of files in the current
directory, redirecting the output with

LS >FILELIST

which collects the list in a file. The program WHO prints a
list of currently logged-on users, one per line.

WHO >USERLIST

produces the same list in the file USERLIST. If the file
named after > exists, it is overwritten, but it is also possi-
ble to append instead of replace:

WHO >>USERLIST

appends the new information to the end of USERLIST.
The text editor is called E;

E <SCRIPT
runs it from a script of previously prepared editing com-
mands.

April 1981

These examples have been chosen advisedly. On many
systems, this set of operations is impossible because in
each case the corresponding program firmly believes that
it should read or write the terminal, and there is no way to
alter this assumption. On other systems, it is possible, but
difficult, to perform the redirection. It is not enough,
however, for a procedure to be just barely possible; it
must be easy. The <and > notation is easy and natural.

Again, observe that the facility is provided by the com-
mand interpreter, not by individual programs. In this
way, it is universally available without prearrangement.

Tools. One of the most productive aspects of the Unix
environment is its provision of a rich set of small, general-
ly useful programs—tools—for helping with day-to-day
computing tasks. The programs shown below are among
the more useful. We will use them to illustrate other
points in later sections of the article.

WCFILES . . .
Count lines, words, and characters in files.

PRFILES. ..

Print files with headings, multiple columns, etc.
LPRFILES. ..

Spool files onto line printer.
GREP PATTERN FILES . . .

Print all lines containing pattern.

Much of any programmer’s work is merely running
these and related programs. For example,

wC*.C

counts a set of C source files;
GREP GOTO *.C

finds all the GOTOs.

Program connection. Suppose we want to count the
number of file names produced by the LS command.
Rather than counting by hand or modifying LS to pro-
duce a count, we can use two existing programs in com-
bination.

LS >FILELIST
WC <FILELIST

LS produces one line per file; WC counts the lines.

As another example, consider preparing a multi-
column list of the file names on the on-line printer. We use
the multicolumn capabilities of the PR command and the
spooling provided by LPR.

LS >FILELIST

PR -4 <FILELIST >TEMP

LPR <TEMP

This is an example of separation of function, one of the
most characteristic features of Unix usage. Rather than
combining things into one big program that does every-
thing (and probably not too well), one uses separate pro-
grams, temporarily connected as needed.

Each program is specialized to one task and according-
ly is simpler than it would be if it attempted more. It is
unlikely that a directory-listing program could print in
multiple columns, and to ask it to also spool for a line
printer would be preposterous. Yet the combination of

15

16

operations is obviously useful, and the natural way to
achieve it is by a series connection of three programs.

Pipes. It seems silly to have to use temporary files just
to capture the output of one program and direct it into the
input of another. The Unix pipe facility performs exactly
this series connection without any need for a temporary
file. The pipeline

LS | PR —4 | LPR

is a command line that performs the same task as the ex-
ample above. The symbol | tells the shell to create a pipe
that connects the standard output of the program on the
left to the standard input of the program on the right.
Programs connected by a pipe run concurrently, with the
system taking care of buffering and synchronization. The
programs themselves are oblivious to the I/O redirection.
The syntax is again concise and natural; pipes are readily
taught to nonprogramming users.

In principle, the pipe notation could be merely a short-
hand for the longer form with temporaries. There are,
however, significant advantages in running the processes
concurrently, with hidden buffers instead of files serving
as the data channels. A pipe is not limited to a maximum
file size and therefore can cope with an arbitrary amount
of data. Also, output from the last command can reach
the terminal before the first command receives all of its in-
put—a valuable property when the first command is an
interactive program like a desk calculator or editor.

As a rule, most programs neither know nor care that
their input or output is associated with a terminal, a file,
or a pipe. Commands can be written in the simplest possi-
ble way, yet used in a variety of contexts without prear-
rangement. This would be much less possible if files did
not share a common format.

As an example of a production use of program connec-
tion, a major application on many Unix systems is docu-
ment preparation. Three or four separate programs are
used to prepare typical documents: TROFF, the basic for-
matting program that drives a typesetter; EQN, a pre-
processor for TROFF that deals solely with describing
mathematical expressions; TBL, a table-formatting pro-
gram that acts as a preprocessor for both EQN and
TROFF; REFER, a program that converts brief citations

. tocomplete ones by searching a data base of bibliographic

references; PIC, a program that translates a language into
commands for drawing simple figures; and a number of
postprocessors for TROFF that produce output on
various devices. Placing all of these facilities into one
typesetting language and program not only would create
an absolutely unworkable monster, it would not fit into
the limited address space of the PDP-11. As it is,
however, each piece is independent enough to be
documented and maintained entirely separately. Each is
independent of the internal characteristics of the others.
Testing and debugging such a sequence of programs is im-
mensely easier than it would be if they were all one, simply
because the intermediate states are clearly visible and can
be materialized in files at any time.

Since programs can interact, novel interactions spring
up. Consider three programs: WHO, which lists the cur-
rently logged-on users, one per line; GREP, which search-

es its input for all occurrences of lines containing a par-
ticular pattern; and WC, which counts the lines, words,
and characters in its input. Taken individually, each is a
useful tool. But consider some combinations:

WHO | GREP JOE

tells whether JOE is presently logged in,
WHO | WC

tells how many people are logged in, and
WHO | GREP JOE | WC

tells how many times JOE is logged in. None of these ser-
vices requires any programming, just the combination of
existing parts.

The knowledge that a program might be a component
in a pipeline enforces a certain discipline on its properties.
Most programs read and write the standard input and out-
put if it is at all sensible to do so; accordingly, it is easy to
investigate their properties by typing at them and watch-
ing their responses. Programs tend to have few encrusta-
tions and features (WHO will not count its users, or tell
you that JOE is logged on). Instead, they concentrate on
doing one thing well, and they are designed to interact
with other programs; the system provides an easy and
elegant way to make the connection. The interconnec-
tions are limited not by preconceptions built into the
system, but by the users’ imaginations.

In this environment, people begin to search for ways to
use existing tools instead of laboriously making new ones
from scratch. As a trivial example, a colleague needed a
rhyming dictionary, sorted so that words ending in “‘a”’
come before those ending in ‘‘b,’’ and so on. Instead of
writing a special SORT or modifying the existing one, he
wrote the trivial program REV, which reverses each line
of its input. Then

REV <DICT | SORT | REV >RHYMINGDICT

does the job. Note that REV need only read and write the
standard input and output.

Placing a sorting program in a pipeline illustrates
another element of design. The pipe notation is so natural
that it is well worthwhile to package programs as pipeline
elements (“‘filters’’) even when, like SORT, they can’t ac-
tually produce any output until all their input is processed.
Recall the uses of GREP: it has appeared as the source for
a pipeline, as the sink, and in the middle.

The existence of pipes encourages new designs as well as
new connections. For example, a derivative of the editor,
called a stream editor, is often used in pipelines, and the
shell may well read a stream of dynamically generated
commands from a pipe.

Program sizes. The fact that so many tasks can be per-
formed by assemblages of existing programs, perhaps
augmented by simple new ones, has led to an interesting
phenomenon—the average Unix program is rather small,
measured in lines of source code.

Figure 2 demonstrates this vividly. The number of lines
of source in 106 programs, including most of the com-
monly used commands, but excluding compilers, was
counted with WC. The counts have been sorted into in-
creasing order of number of source lines with SORT, con-

COMPUTER

verted into a graph with GRAPH, then converted into
TROFF commands. The x axis is the number of lines; the
y axis is simply the ordinal number of the program.

The median program here is about 250 lines long; the
90th percentileis at about 1200lines. That is, 90 percent of
these programs have less than 1200 lines of source code
(about 20 pages). Clearly, it is much easier to deal with a
20-page program than a 100-page program.

The programs are written in C, as are essentially all
Unix programs that yield executable code, including the
operating system itself. We feel that C itself is another
source of high productivity—it is an expressive and ver-
satile language, yet efficient enough that there is no com-
pulsion to write assembly language for even the most
critical applications.

C is available on a wide variety of machines, and with
only modest effort it is possible to write C programs that
are portable, programs that will compile and run without
change on other machines. It is now routine in our en-
vironment for programs developed for the Unix system to
be exported unchanged to other systems. There is ob-
viously a considerable gain in productivity in not having
to rewrite the same program for each new machine.

Since the operating system itself and all of its software
is written in C, it too is portable. The Unix system itself
has been moved from the PDP-11 to, among others, the
Interdata 7/32 and 8/32, DEC VAX 11/780, Univac
1100, Amdahl 470/V7, and IBM S/370. From the user’s
standpoint, these systems are indistinguishable to the
point that a command called WHERE, which identifies
the current machine, has become widely popular. The
original porting of Unix to the Interdata 8/32 is described
by Johnson and Ritchie’; Miller describes transporting
Unix to the Interdata 7/32 in an independent experi-
ment.® There are also Unix lookalike systems on a variety
of microcomputers.

Avoiding programming

The command language. We have already mentioned
the basic capabilities of the Unix shell, which serves as the
command interpreter. The critical point is that it is an or-
dinary user program, not a part of the system.’ This has
several implications: the shell can readily evolve to meet
changing requirements and can be replaced by special ver-
sions for special purposes on a per-user basis. Perhaps
most important, it can be made quite powerful without
consuming valuable system space.

Much of the use of the shell is simply to avoid program-
ming. The shellis an ordinary program, so its input can be
redirected with <. Thus, if a set of commands are placed
in a file, they can be executed just as if they had been
typed. The command to do so is

SH <CMDFILE

(SH is the name of the shell). The file CMDFILE has no
special properties or format—it is merely whatever would
have been typed on the terminal, but placed in a file in-
stead. Thus, a ‘‘catalogued procedure’’ facility is not a
special case, but a natural by-product of the standard I/0
mechanism.

April 1981

This is such a useful capability that several steps have
been taken to make it even more valuable. The first is the
addition of a limited macro capability. If there are
arguments on the command line that invoke the pro-
cedure, they are available within the shell procedure

SH CMDFILE ARGI ARG2 . . .

It is manifestly a nuisance to have to type SH to run
such a sequence of commands; it also creates an artificial
distinction between different kinds of programs. Thus, if
a file is marked executable but contains text, it is assumed
to be a shell procedure and can be run by

CMDFILE ARG1 ARG2 . . .

In this way, CMDFILE becomes indistinguishable
from a program written in a conventional language; syn-
tactically and semantically, the user sees no difference
whatsoever between a program that has been written in
hard code and one that is a shell procedure. This is
desirable not only for ease of use, but because the im-
plementation of a given command can be changed
without affecting anyone.

As a simple example, consider the shell program TEL,
which uses GREP to search an ordinary text file, /USR/
LIB/TEL, for telephone numbers, names, etc. In its en-
tirety, the procedure is

GREP $1 /USR/LIB/TEL

$1 stands for the first argument when the command is
called; the command

TEL BWK
produces
BRIAN KERNIGHAN (BWK) 6021

Since TEL uses the general-purpose pattern finder
GREP, not a special program that knows only about
telephone directories, the commands TEL 6021, TEL
BRIAN, and TEL KERN all produce the same entry.
The shell is actually substantially more powerful than
might be inferred from simple examplés like TEL. It is a

Figure 2. Program sizes on Unix.

17

18

programming language in its own right, with variables,
control flow, subroutines (calling other programs), and
even interrupt handling. In fact, as the shell has become
more powerful and provided more facilities, there has
been a steady trend toward writing complicated processes
in the shell instead of in C. However, it has remained true
that the shell is just an ordinary user program,; its input is
ordinary text, and a user cannot, by running a program,
determine whether or not it is a shell process.

The shell is substantially more powerful
than might be inferred from simple examples
like TEL. It is a programming language
in its own right.

Although the shell resembles a typical procedural
language, it has rather different qualities. Most impor-
tant, in certain ways it is a very high-level language, and as
such is far easier to learn, use, and understand than lower-
level languages. Shell programs are inherently easier to
understand and modify than conventional programs be-
cause they are small (usually a handful of lines) and use
familiar high-level building blocks.

The shell language is rapidly extensible—users can
create new commands on the spur of the moment, and it
can be adapted to meet performance requirements
without disturbing its user interface. The elements of its
language are generally quite independent, that is, changes
to most pieces can be made without affecting the others.
The shell provides most of the interconnection among
programs—the complexity of interaction is linear (or less)
because components are so independent of one another.
As aresult, it is difficult, even for a beginner, to write un-
modular shell procedures. Modularity is inherent in the
language and occurs without effort or careful planning.
The fact that the language has no GOTO statement prob-
ably helps.

Usage statistics. The ease with which command lan-
guage programs can be written has led to a steady growth
in their use. This is illustrated by usage figures for a
representative system, one of the nine that in 1977 made

- up the original Programmer’s Workbench (PWB/Unix)

installation.?!! The system served about 350 users, who
owned a total of 39,000 files and 2850 directories. The
mean file size was about 3700 bytes; the mean number of
files per directory was 14. A majority of the people using
this system worked on programs to be run on IBM S/370
computers; some worked on software to run on a Unix
system; everyone used the system for documentation and
project management activities. Project sizes ranged from
one person to about 50.

By 1980, this system had grown to more than 20
machines, including PDP-11s, VAXs, and a part of a
Univac 1100, serving a user population of well over 1000.

In 1977, we surveyed command language usage by run-
ning a program that searches for shell procedures, records
their size distribution, and prints them for visual inspec-
tion. We found 2200 shell procedures and only 500 com-
piled programs; the former is a conservative count,

because the search program necessarily misses some files
that actually are shell procedures. The shell procedures
counted were fairly small, averaging a little over 700 bytes
apiece. Examining the distribution of lines per procedure,
we found a mean of 29 lines, a median of 12, and a mode
of one. In fact, 11.7 percent of all procedures consisted of
but a single line. About 45-50 percent of the procedures
contained some conditional logic; about half of these (or
20-25 percent of the total) included loops, primarily to per-
form the same operation on each file in an argument list.

Spot checks in 1980 indicate that programming usage
increased since 1977, as it had between 1975 and 1977.12:13
The proportion of shell programs is higher in the more re-
cent period, though the characteristics of individual pro-
grams are much the same. One new wrinkle is that it has
become common for each user to have a collection of per-
sonal commands, a result of the fact that the shell permits
users to alter the default search path for finding com-
mands. These personal commands are almost invariably
shell programs.-

Several conclusions can be drawn. First, people make
significant use of shell procedures to customize the
general environment to their particular needs, if only to
abbreviate straight-line? sequences of commands. For ex-
ample, most one-line procedures consist of a single com-
mand (like TEL) or pipeline and are often used to provide
fixed argument values to commands that cannot reason-
ably know correct default values. Thus, commands need
not be complicated by special default rules, but can still be
quickly customized for local needs. Second, program-
ming goals are accomplished by writing shell procedures
rather than compiled programs. Examples include small
data base management packages, procedures to generate
complex job control language for other systems, and
project management procedures for configuration con-
trol, system regeneration, project scheduling, data dic-
tionary management, and interuser communication.
Third, as people become accustomed to this method-
ology, its use increases with time.

Current programming methodology. An unusual pro-
gramming methodology grows from the combination of a
good toolkit of reliable programs that work together, a
command language with strong programming features,
and the need to manage constant change at reasonable
cost. ‘

First, it is often possible to avoid programming com-
pletely because some combination of parts from the
toolkit can do the job. A spectrum of cooperating utilities
like GREP, SORT, and WC goes a long way toward
handling many of the simple tasks that occur every pro-
gramming day. In addition, we are seeing the develop-
ment of general-purpose data transformers that can con-
vert data from a file or program into some different form
for another program. One notable example is SED, the
stream-oriented version of the text editor.

Second, if a program is necessary, the initial version
can often be written as a shell procedure instead of asa C
program. This approach permits a prototype to be built
quickly, with minimal investment of time and effort. If it
is used a few times and thrown away, no great effort has
been expended. Even if a C program is needed, it may well

COMPUTER

be tiny, performing some simple transformation like the
REV program.

Third, almost any program must be continually modi-
fied to meet changing requirements, and no amount of
initial design work is a complete substitute for actual use.
In fact, too much design without experience can lead to a
first-class solution to the wrong problem. A program may
require a period of rapid and drastic evolution before
stabilizing. Modification of a shell procedure is both
cheap and reliable, since it is a small object built of
generally reliable parts and exists only as a file of editable
text. No compilation is necessary, and there are no object
modules to maintain and update.

Fourth, once a procedure evolves to an effective, more-
or-less stable state, it can be left alone—if it is fast enough
forits intended uses, which are by then weil known. Ifit is
too slow, it can be entirely rewritten in C, or at least some
small, crucial section can be recoded, with the existing
version providing a proven functional specification. De-
ferral of efficiency considerations until the design and the
usage patterns have stabilized usually prevents the all too
common error of premature optimization.

Capabilities are improved in several ways. A task that
recurs frequently may show the clear need for a general-
purpose tool; by the time it is written, its requirements are
fairly well defined. An existing tool can be upgraded as it
is recognized that some change would enhance its usabili-
ty or performance. Finally, new ways of combining pro-
grams can be added to the shell.

The effect of this methodology is to substitute reliable,
low-cost programming for unreliable or expensive pro-
gramming. The effort required to produce both reliability
and efficiency is reserved for code that really requires
these attributes. Effort is applied efficiently because ac-
curate requirements are known by the time the code is
written.

Although this approachis hardly applicable to all prob-
lems, it fits some quite well; serious production systems
have been successfully created in this way.

Usage in development projects. Shell programming has
been used for years to support programming projects. As
one example, one of the authors manages a team of soft-
ware people, systems engineers, and psychologists in pro-
ducing a management decision support system now being
deployed in the Bell System. Shell procedures are used ex-
tensively to help manage the project. The result is a
cohesive, integrated, heavily automated environment,
used not only by programmers, but by everyone involved
in the project, including managers, planners, and end
users. Simple procedures exist to control the product, re-
generate it from the source code, and even deliver it elec-
tronically to remote machines, all without much manual
effort. Other procedures are used to avoid repetitive
coding by converting skeleton programs or lists of data
items into complete C or PL/I programs. Some programs
are transformed to become documents, and vice versa, so
that people tend to view the system as an integrated data
base of project information and procedures, in which the
line between software and documentation is quite fuzzy.

Heavily integrated programming environments are
proposed often, but few are actually built; fewer still are

April 1981

successful. An irony of the environment described above
is that its outward appearance is of a comprehensive, in-
tegrated system. In fact, it is made up of just the oppo-
site—small shell procedures and Unix commands.

This project also illustrates the use of shell procedures
in the delivered product. A hybrid mainframe-minicom-
puter product, it contains about 15K lines of PL/I, 10K
lines of C, 30K lines of documentation, and 16K lines of
shell. Shell procedures provide most of the user-visible
functions. This project’s success has often depended on
the ability to write something quickly using the shell, ob-
tain user feedback, and adapt it rapidly to fit real needs
discovered in the field. In numerous cases, the first ver-
sion of a program was written quickly and then discarded
just as quickly—not because it was slow, but because re-
quirements changed as soon as end users saw the results of
those requirements.

Unix and modern programming
methodologies

Even though at its birth a system may be clean and easy
to use, the natural increase of entropy tends to cause it to
grow.ugly and unpleasant. Like any other system, Unix is
vulnerable to this process, although so far it has aged
gracefully. Fortunately, its creators have always favored
taste, restraint, and minimality of construct.>!42 They
have maintained a steady pressure to reduce the number
of system calls, subroutines, and commands by judicious
generalization or by combination of similar constructs.

In some environments, every new construct is hailed as
an advance—an expression of the philosophy that more is
always better. Unix developers view additional constructs
with suspicion, while greeting with pleasure proof that
several existing constructs can be combined and simpli-
fied as a result of some new insight. Anything new must
prove that it truly deserves a niche in the scheme of things,
and it must then hold its place against competition. In the
long run, any given niche really has room for but one oc-
cupant, so people continually attempt to identify distinct
niches and fill them with the fittest competitors.

The capacities of human beings to comprehend, docu-
ment, and maintain computer software have limits, which
must be respected; therefore, redundant and overlapping
software must be avoided. It is especially important to
maintain simplicity in constructs that are central to
everyone’s use. No feature is truly free; each has costs as
well as benefits, which must be weighed carefully before
the feature is included in central programs like the Unix
kernel, the C compiler, the shell, or the text editor.

System evolution. The current Unix system has evolved
through a process resembling Darwinian selection. In the
first stage of the cycle (mutation), the ‘‘standard’’ version
of the system is used by many people, who inevitably
customize it for their local needs. They usually lobby to
have their favorite features included in the next standard
version. In the second stage (selection and cross-breeding),
the next standard version is created and often includes
features from the strongest mutants. Meanwhile, the
weaker mutants die out, since people tire of supporting

19

20

unnecessary differences. Although the Unix system has
grown more complex in this process, features usually have
been validated in more than one project before inclusion
‘in the standard version.

Programming methodologies can also be selected by
first encouraging experimentation, then eliminating the
least competitive approaches. No one can afford to
swallow the entire deluge of available methodologies, for
each addition seems to produce fewer results than its
predecessor. Thus, one should pick and choose with care.
Although there is no panacea for programming ills, Unix
usage seems to solve many common problems without
bother or new methodologies. There are two reasons for

The Unix system supports many approaches in
such a natural and pervasive way that people
apply them without great effort, often without
awareness of the published literature.

this. First, the Unix system supports many approaches in
such a natural and pervasive way that people apply them
without great effort, often without awareness of the
published literature. Second, other approaches are made
unnecessary by using the Unix system in the first place.
Some examples follow.

Structured coding is taken for granted, since modern
control-flow constructs are provided by C, the shell, and
most other language processors used on Unix syscems.
The code that people see, adapt, and imitate is usually
well structured. People learn to code well in the same way
that they learn to speak their native language well, by im-
itation and immediate feedback.

Formal walk-throughs are used only occasionally on
Unix systems, because people often look at each other’s
code, comment on it in person and through interuser
communication facilities, and take pieces of it for their
own use. The ideas of programming teams and egoless
programming fit into the Unix environment well, since
they encourage sharing rather than isolation. Although
some programs have always been ‘‘owned’’ by one or two
people, many others have been passed around so much
thatitis difficult to tell exactly who wrote them. Program-
ming groups of widely varying personalities exist happily
in the Unix environment; neither chief programmers nor
truly egoless ones are common.

Design techniques such as data flow diagrams, pseudo-
code, and structure charts are seldom necessary, especial-
ly in light of the ease of writing a few short shell pro-
cedures to provide the code and documentation for the
highest levels of control. For example, Yourdon and Con-
stantine!’ say ‘. . . it is definitely true that many Unix
designers (the authors included) do nothing more than
program the bubbles in a data flow graph, without the in-
termediate step of converting it into a structure chart.”’
Certain aspects of the Jackson Design Methodology,'
such as program inversion and resolution of structure
clashes, seem unnecessary in a system that provides pipes,
allows the use of small programs, and eliminates logieal
and physical records.

The idea of a development support library is justifiably
popular.!” The Unix system performs the services re-
quired of such a library efficiently and conveniently,
especially when compared to packages grafted onto ex-
isting batch systems. Since the latter were originally built
for different purposes, their communication and file
systems are often not oriented to interactive work.

Baker!” has observed that the exact role of the program
librarian in an interactive development environment *‘re-
mained to be determined.’’ In the presence of a Unix sys-
tem the role seems to be minimal, especially in the original
sense of providing control and eliminating drudgery. Pro-
grams, documents, test data, and test output are stored in
the Unix file system and protected either by the usual file
access mechanism or by more elaborate software, such as
the Source Code Control System.!®1° Much of the
drudgery found in other systems is simply bypassed by
Unix; it has always been fit for human beings to use. Tools
have been built to automate many common programming
tasks,2® and project control procedures are easily written
as shell procedures. Many of our programming groups
have experimented with the librarian concept and con-
cluded that, given a decent environment, there is little
need for a program librarian.

None of this should necessarily be taken as a criticism
of these techniques, which can be useful in some situa-
tions. We simply prefer to minimize the number of tech-
niques we must use to get a job done, and we observe that
Unix service is the last ane we would give up.

Attributes of programming environments

Programming environments resemble programming
languages. Most people use only a few, prefer either their
first or their current one above all others, and argue the
merits of one versus another. And yet, there are few truly
objective metrics for comparison. In this section, we sug-
gest some important attributes by which to classify pro-
gramming environments and analyze the design trade-
offs found in them. The Unix system is evaluated in these
terms.

Group size, organization, and sociology. Program-
ming environments usually reflect the size, organization,
and sociology of the groups that create them. At one ex-
treme is the loosely coupled set of individuals, each with
his own computer or isolated virtual machine. Examples
include personal computers, the Xerox Alto/Ethernet ar-
chitecture, and perhaps IBM’s VM370/CMS. At the
other extreme, some systems are built specifically to han-
dle the problems of large programming teams. ICL’s
CADES,?! which supported a 200-person project, is an
example of a successful system of this type.

Unix systems typically lie between the two extremes.
Through 1974, Unix best supported a single, cooperative,
tightly coupled group of people on each machine. By
1975, PWB/Unix began offering better support for larger
groups and multiple groups per machine. Over the years,
the mechanisms needed to support this variety have
evolved and been included in the standard system.
Although some large projects (of more than 200 people)

COMPUTER

are successfully supported on networks of Unix ma-
chines, most people who work together prefer to use the
same machine so they can easily share procedures and
data bases.

System adaptability. This attribute measures the ease
of adapting a system to change its capabilities. Systems at
one extreme have many capabilities, but every capability
is fixed, unchangeable by the user. At the other extreme,
the system provides few features and is easy to change; or
else provides a good toolkit, but requires that tools be
combined to do the job. The first extreme offers a system
optimized for some job; the second offers flexibility, but
at the cost of modifying a system or assembling some
tools. The first is often easier for the beginner; experts
tend to favor the second.

The Unix system favors a minimum of built-in con-
structs and maximum ease of adaptability. Ease of change
is sometimes a disadvantage. Because it is easy to change
the operating system, variants proliferate—often for no
good reason. A second disadvantage is that new users can
be overpowered by the toolkit provided. They know there
is a way to do a job, but there are so many tools that it is
difficult to find the right one. ,

Level of expertise. Systems often aim at different levels
of expertise and -at different mixtures of expertise level.
Early Unijx systems were used and supported by expert
programmers. Later versions have tended to add more
facilities for less-experienced people. Often, a program-
ming group contains a single ‘‘guru,’’ who customizes the
general environment to support the specific needs of peo-
ple less skilled in the use of Unix tools.

Life cycle. Assume that a software product’s life cycle
consists of requirements analysis, design, code, test, and
deployment, with maintenance considered to be repeated
cycles of the previous steps. Different programming en-
vironments support these phases unequally. For example,
PSL/PSA?? and similar systems emphasize requirements
analysis. Many systems emphasize coding or testing aids.
Unix systems seldom support ambitious packages for re-
quirements analysis and design, but do support these ac-
tivities in general ways, e.g., by providing good text-
processing tools and file organizations that are conve-
nient for managing data bases of requirements and design
information. PWB/Unix was somewhat unusual for its
time, in emphasizing deployment, support, and mainte-
nance tools and in specifically attacking time-consuming
programming drudgery.

Integration of facilities. At one extreme—found all too
often—system features are independent to the extent that
they are difficult to use together, even when it is necessary
to do so. At the other extreme, a few systems offer tight
integration of as many facilities as possible, so that the
system displays a comprehensive, uniforminterfacetothe
user, Good examples are Interlisp?»24 and Smalltalk .2

The Unix toolkit approach lies somewhere in the mid-
dle. Most tools are specifically written to be modular and
independent, even if the result is a set of tools rather than
a single large command that could be used in their place.

April 1981

This approach has some disadvantages that strongly in-
tegrated systems do not. Sometimes commands use un-
necessarily different calling conventions, simply because
they are contributed by different people. In cases where
commands are often used together or interact in peculiar
ways, users would prefer to have more integrated com-
binations. For example, there are circumstances in which
the one-way flow of information in a pipe is just not ade-
quate. This is particularly evident in complicated text-
processing applications, in which preprocessors need bet-
ter communication with TROFF than a pipe can provide.

Specialization. Systems differ radically in their views of
specialization, not only for attributes mentioned above,
but for others such as language, methodology, and target
computer. At one extreme is a system that supports one
choice very well and others not at all. As examples, one
finds ‘‘single-language’’ systems and program develop-
ment systems that not only support but enforce a single
choice of methodology. At the other extreme lie those
systems that would support all choices in a fairly equal
fashion.

Unix systems lie in the middle. Although they supporta
number of languages, C and the shell are usually supported
significantly better than anything else. Unix systems are
fairly impartial with regard to methodology, and they sup-
port the production of code for many different target ex-
ecution environments. The best-supported target is the
Unix system itself. Next best are those non-Unix systems,
including most microprocessors, that are dominated by
their supporting Unix systems and therefore often use in-
terfaces built for development convenience. Next are
those machines for which Unix-based support software
has been written, but which dominate the attached Unix
systems so that interfaces may well be less convenient than
desired. Examples include special-purpose computers
(switching machines) and large, non-Unix mainframes
that enforce their own interfaces. Finally, some targets
are not supported at all, and thus require the writing of
new interfaces.

Failure and success. Winners and losers can seldom be
distinguished solely by studying the published literature,

A truly successful system’s use spreads far
beyond its original inventors. It is used
enthusiastically by many people and quickly
occupies niches from which it is
difficult to dislodge.

which contains proposals for systems never built, glowing
accounts that outshine the actual user manuals, and
descriptions of systems that work but have not spread
beyond their original environments. People seldom write
retrospectives on failures; when written, they often go un-
published. In this section, we propose a success scale for
programming environments and place Unix on that scale.

Extreme failure is represented by a system that is never
built at all, or by a paper system whose ideas are never

21

22

taken up by any successful system.

Medium failure is represented by a system that is built
but soon abandoned, even by itsimmediate inventors. Ifa
system is used only by its inventors and would vanish
upon their departure, it probably falls into this category.

Many programming environments enjoy minor suc-
cess. They are used by people other than the original in-
ventors and are recognized further afield, but obtain only
a small slice of the potential market.

Extreme success has several attributes. A truly suc-
cessful system’s use spreads far beyond its original inven-
tors. It is used enthusiastically by many people and quick-
ly occupies niches from which it is difficult to dislodge.
People build new systems using its ideas or even parts of
its software. Finally, people assume the system is so well
known that they mention it without citation.

Given its exponential growth rate and widespread im-
pact, it is not surprising that the Unix system rates quite
high on this scale. One can trace the spread of many soft-
ware tools from the Unix system through a book? into
various other environments.?’?® Much of the current
research on secure systems is Unix-based,’*3? many in-
dustry and government groups have chosen Unix as the
basis for or inclusion in their own programming environ-
ment systems,33-38 and numerous vendors offer Unix-
related products.

Reasons for success. To be successful, any program-
ming environment must score well on at least some
technical attributes. However, technical quality is not
enough for success—many high-quality systems have
fallen by the wayside. At least part of the Unix system’s
success must come from its adaptability and nonspecial-
ization, which allow it to thrive in many different niches.

Success or failure often depends on nontechnical fac-
tors, whose importance often goes unrecognized by those
who evaluate systems on purely technical terms. For ex-
ample, a system is seldom widely successful if it is based
on ‘‘orphan’’ hardware, i.e., hardware that is out of pro-
duction or produced only in small numbers. Unix
popularity was certainly not harmed by the initial choice
of hardware, the DEC PDP-11.

Another impediment to success is a high rating on what
we call the ‘‘gulp factor.”” Suppose that an organization
must swallow a new system in a giant gulp because it re-
quires a great deal of time or money, demands massive
changes in programming 'techniques, or requires aban-
doning much existing code. Such a system is much harder
to spread than is a system like Unix, which is relatively
cheap, can be integrated slowly into the existing environ-
ment, and can help with the maintenance of old code.
Small Unix systems have often opened doors for later,
larger machines—the original Programmer’s Work-
bench/Unix installation started as a single PDP-11/45 in
1973 and currently contains over 20 PDP-11/70s and
VAX-11/780s. Some of that expansion depended on the
ability to pick up existing code (Cobol, for example) and
assist in its maintenance. The decreasing ratio of new
development to maintenance indicates that any program-
ming environment faces an uphill battle if it insists that all
existing code be discarded and that all work be done from
the very beginning of the project life cycle.

Finally, it is a nontechnical plus for a system to be fun
to use. This factor alone can make up for many other defi-
ciencies.

Conclusions

We have found the Unix environment to be an especial-
ly productive one. This is largely because.it presents a
clean and systematic interface to programs that run onit,
it has a wealth of small, well-designed programs that can
serve as building blocks in larger processes, and it pro-
vides mechanisms by which these programs can be quickly
and effectively combined. The programmable command
language itself is the single most important such program,
for it provides the means by which most other programs
cooperate.

These facilities are used for a wide range of applica-
tions. Design, coding, and debugging are all made easier
by the use of combinations of existing, small, reliable
components instead of the construction of new, large,
unreliable ones. Finally, the Unix system goes a long way
toward solving people’s programming problems without
requiring a host of additional tools and methodologies.

The Unix system is exceptionally successful—we hope
this article helps to explain why and how this success came
about. B

Acknowledgments

Ken Thompson and Dennis Ritchie are the creators of
the Unix system; without their insight and good taste,
none of this would be possible. We are also indebted to
the many people who have built on the Unix base.

References

1. D.M. Ritchie and K. Thompson, ‘“The UNIX Time-Shar-
ing System,”” Comm. ACM, Vol. 17, No. 7, July 1974, pp.
365-375. :

2. D. M. Ritchie, ‘““‘UNIX Time-Sharing System: A Retro-
spective,”’ Bell System Technical J., Vol. 57, No. 6, Oct.
1978, pp. 1947-1969.

3. D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Ker-
nighan, ‘““UNIX Time-Sharing System: The C Program-
ming Language,’’ Bell System Technical J., Vol. 57,No. 6,
Oct. 1978, pp. 1991-2019.

4. B. W.Kernighan and D. M. Ritchie, The C Programming
Language, Prentice-Hall, Englewood Cliffs, N.J., 1978.

5. K. Thompson, ‘‘The UNIX Command Language,”’ in
Structured Programming—Infotech State of the Art Re-
port, Infotech International Ltd., Berkshire, England,
Mar. 1975, pp. 375-384.

6. S.R.Bourne, ‘‘An Introduction to the UNIX Shell,”” Bell
System Technical J., Vol. 57, No. 6, Oct. 1978, pp.
2797-2822.

7. S. C. Johnson and D. M. Ritchie, ‘“UNIX Time-Sharing
System: Portability of C Programs and the UNIX System,”’
Bell System Technical J., Vol. 57, No. 6, Oct. 1978, pp.
2021-2048.

COMPUTER

24

5l

12.

13;

15.
16.

17.
18.
19.
20.
21

22,

23.
24.

25;
26.

27.

28.

29.

Richard Miller, ¢‘UNIX—A Portable Operating System?”’

Operating Systems Rev., Vol. 12, No. 3, July 1978, pp.

32-37.

T. A. Dolotta and J. R. Mashey, ‘‘An Introduction to the
Programmer’s Workbench,”” Proc. 2nd Int’l Conf. Soft-
ware Eng., Oct. 1976, pp. 164-168.

E. L. Ivie, ‘““The Programmer’s Workbench—A Machine
for Software Development,’’ Comm. ACM, Vol. 20, No.
10, Oct. 1977, pp. 746-753.

T. A. Dolotta, R. C. Haight, and J. R. Mashey, ‘‘UNIX
Time-Sharing System: The Programmer’s Workbench,”’
Bell System Technical J., Vol. 57, No. 6, Oct. 1978, pp.
2177-2200.

J. R. Mashey, ‘“‘Using a Command Language as a High-
Level Programming Language,”” Proc. 2nd Int’l Conf.
Software Eng., Oct. 1976, pp. 169-176.

T. A. Dolotta and J. R. Mashey, ‘“Using a Command
Language as the Primary Programming Tool,”’ in Com-
mand Language Directions: Proc. 79 IFIP Working Conf.
Command Languages, D. Beech, ed., North-Holland,
Amsterdam, The Netherlands, 1980.

D. M. Ritchie, ‘“The Evolution of the UNIX Time-Sharing
System,”’ Proc. Symp. Language Design and Program-
ming Methodology, Sidney, Australia, 1979.

E. Yourdon and L. L. Constantine, Structured Design,
Yourdon Press, New York, 1978, p. 317.

M. A. Jackson, Principles of Program Design, Academic
Press, London, 1975.

F. T. Baker, ‘“‘Structured Programming in a Production
Programming Environment,”’ Proc. Int’l Conf. Reliable
Software, 1975, pp. 172-185.

M. J. Rochkind, ‘“The Source Code Control System,”’
IEEE Trans. Software Eng., Vol. SE-1, No. 4, Dec. 1975,
pp. 364-370.

A. L. Glasser, ‘“The Evolution of a Source Code Control
System,”” SICSOFT, Vol. 3, No. 5, Nov. 1978, pp.
121-125.

S. I. Feldman, “MAKE—A Program for Maintaining
Computer Programs,”” UNIX Programmer’s Manual,
Vol. 9, Apr. 1979, pp. 255-265.

D. J. Pearson, ‘“The Use and Abuse of a Software Engi-
neering System,”” AFIPS Conf. Proc., 1979 NCC, pp.
1029-1035.

D. Teichroew and E. A. Hershey III, ‘“PSL/PSA: A
Computer-Aided Technique for Structured Documenta-
tion and Analysis of Information Processing Systems,”’
IEEE Trans. Software Eng., Vol. SE-3, No. 1, Jan. 1977,
pp. 42-48.

'W. Teitelman, INTERLISP Reference Manual, Xerox

Corp. Palo Alto Research Center, Palo Alto, Calif., Dec.
1978.

W. Teitelman, ‘‘A Display Oriented Programmer’s Assis-
tant,”” CSL 77-3, Xerox Corp. Palo Alto Research Center,
Palo Alto, Calif., Mar. 1977.

A. Kay and A. Goldberg, ‘‘Personal Dynamic Media,”
Computer, Mar. 1977, pp. 31-41.

B. W. Kernighan and P. J. Plauger, Software Tools,
Addison-Wesley, Reading, Mass., 1976.

BB Hall, D. K. Scherrer, and J. S. Sventek, ‘‘A Virtual
Operating System,”’ Comm. ACM, Vol. 23, No. 9, Sept.
1980, pp. 495-502.

C. R. Snow, “The Software Tools Project,” Software—
Practice & Experience, Vol. 8, No. 5, Sept.-Oct. 1978.

P. H. Enslow, Jr., Portability of Large Cobol Programs:
The Cobol Programmer’s Workbench, Georgia Institute
of Technology, Atlanta, Ga., Sept. 1979.

30. J.P.L.Woodward, ‘“Applications for Multilevel Secure
Operating Systems,”” AFIPS Conf. Proc., 1979 NCC, June
1979, pp. 319-328.

31. G.J. Popek et al., “UCLA Secure Unix,”” AFIPS Conf.
Proc., 1979 NCC, June 1979, pp. 355-364.

32. E. J. McCauley and P. J. Drongowski, ‘“KSOS—The
Design of a Secure Operating System,”” AFIPS Conf.
Proc., 1979 NCC, June 1979, pp. 345-353.

33. E. J. McCauley, G. L. Barksdale, and J. Holden, ‘‘Soft-
ware Development Using a Development Support Ma-
chine,”” ADA Environment Workshop, DoD High Order
Language Working Group, Nov. 1979, pp. 1-9.

34. M. Risenberg, ‘‘Software Costs Can Be Tamed, Devel-
opers Told,”” Computerworld, Jan. 29, 1980, pp. 1-8.

35. J.E. Stockenberg and D. Taffs, ‘‘Software Test Bed Sup-
port Under PWB/UNIX,”” ADA Environment Workshop,
DoD High Order Language Working Group, Nov. 1979,
pp. 10-26.

36. R. A. Allshouse, D. T. McClellan, G. E. Prine, and C. P,
Rolla, ‘“CSDP as an ADA Environment,” ADA Environ-
ment Workshop, DoD High Order Language Working
Group, Nov. 1979, pp. 113-125.

37. P. Wegner, ‘“The ADA Language and Environment,’’
Proc. Electro/80, Western Periodicals Co., North Holly-
wood, Calif., May 1980.

38. R. A.Robinson and E. A. Krzysiak, ‘‘An Integrated Sup-
port Software Network Using NSW Technology,”” AFIPS
Conf. Proc., 1980 NCC, May 1980, pp. 671-676.

Brian W. Kernighan is a member of the
technical staff in the Computing Principles
Research Department, Bell Laboratories,
Murray Hill, New Jersey. His current re-
search activities are in document prepara-
tion software, programming languages, and
programming methodology. He is the co-
author (with P. J. Plauger) of The Elements
of Programmmg Style, Software Tools, and
Software Tools in Pascal, and (with D. M.
thchle) of The C Programming Language.

He received a BS in engineering physics from the University of
Toronto in 1964, and an MA and PhD in electrical engineering
from Princeton University in 1969.

John R. Mashey is a supervisor of a soft-
ware development group at Bell Labor-
atories, Whippany, New Jersey. His inter-
ests include programming methodology,
command languages, text processing, and
interactions of computers, people, and
personnel structure. Since joining Bell
Laboratoriesin 1973, he has worked on the
Programmer’s Workbench version of

. Unix (PWB/Unix) and, since mid-1978,
has superv1sed the design and development of a new applications
system, used to reduce the costs of telephone facilities
maintenance.

He is an affiliate member of the IEEE, a member of ACM,
and has been an ACM National Lecturer for several years. He
received a BS in mathematics in 1968, an MS in computer science
in 1969, and a PhD in computer science in 1974, all from the
Pennsylvania State University.

COMPUTER

