
Memory transfers due to a cache miss are costly. Prefetching all
memory references in very fast computers can increase the

effective CPU speed by 10 to 25 percent.

$@@1U(0 f (0)Cg)g) (.oCz((g Q

Alan Jay Smith
University of California, Berkeley

Transfers of information between levels of an
automatically managed memory hierarchy at the
time the program references it (a miss) are usually
costly in overhead operations and idle time. The fact
that patterns of program execution and data access
are largely sequential provides the opportunity to
set up some means for predicting which sections
(pages) of a program's memory address space are
likely to accessed in the near future. By prefetching
these pages before they are actually needed, system
efficiency can be significantly improved.
The problem is to relate the type of prefetching to

the page size and the memory size. We simulated
these variables using several kinds of program ad-
dress traces. It was found that prefetching small
page sizes, such as those used in cache memories, is
potentially effective, but is critically dependent on
the details of how the cache memory is imple-
mented. This led us to investigate the architecture
of the cache memories for the IBM 370/168 and Am-
dahl 470V/6, and we show how prefetching might be
properly implemented in these machines.

Memory hierarchies and prefetching

Large modern computer systems frequently
employ an automatically managed memory hier-
archy such as the one illustrated in Figure 1. Infor-
mation is usually transferred to higher levels (or
"fetched") on a demand basis whereby, when a
datum is referenced and is found to be absent from
the highest level of the hierarchy, it is copied from
the highest level at which it is resident to some or all
higher levels. The event of a missing datum is called
a "miss"; it is also known, in the case of a datum

missing from main memory, as a page fault. The
miss ratio (to a given level of the hierarchy) is the
fraction of all memory references resulting in a miss
(that is, a fetch from a lower level).

Memory reference patterns govern prefetching.
Certain patterns are commonly found in the
memory referencing behavior of computer pro-
grams, and it is possible to use these patterns to at-
tempt to predict which sections of a program's ad-
dress space will be referenced next. Information
that is fetched before it is actually accessed is
prefetched. Prefetching is possible between any two
levels of the memory hierarchy. Because demand
fetches usually involve higher "costs" to the system
than successful prefetches, prefetching can improve
system efficiency.
The higher costs for demand fetches are assoc-

iated with both CPU overhead and idle time. De-
mand transfers between cache and main memory
are performed by the hardware while the CPU re-
mains idle, but prefetches can be done in parallel,
simultaneously with normal program operation,
thus avoiding CPU idle time. With current tech-
nology, transfers at lower levels of the hierarchy re-
quire software intervention, but scheduling and in-
itiating several of these transfers at once can often
reduce the overhead per transfer. Although multi-
programming is usually used to prevent the CPU
from becoming idle because of page faults, there is
not always a program ready to run, and some idle
time frequently occurs.

Prefetching has a system cost. The prefetch ratio
is the ratio of the number of prefetch data transfers
to the total number -of memory references, and the

0018-9162/78/1200-0007$00.75 © 1978 IEEEDecember 1978 7

Figure 1. A typical memory hierarchy.

transfer ratio is the sum of the miss and prefetch
ratios. If we assign a cost P to a prefetch and a cost
D to a demand fetch, then the utility of prefetching
depends on the proper relational operator for Equa-
tion 1:

D*miss ratio(demand) >=<
D*miss ratio(prefetch) + P*prefetch ratio (1)

where miss ratio(demand) is the miss ratio when no
prefetching is used and miss ratio(prefetch) is the
miss ratio when a prefetch algorithm is employed.
Prefetches may be frequent enough that it is not

only possible that P*prefetch ratio is large, but also
that miss ratio(prefetch) is greater than miss
ratio(demand). This latter effect is a consequence of
what we call memory pollution.' Every prefetch
operation involves removing some other, already
resident page from memory. If this removed page is
referenced sooner than the prefetched one (which
may not ever be referenced), this prefetch has in-
creased the number of page faults. This is called
memory pollution since memory is polluted with
prefetched pages that will not be used and that have
displaced other, more useful pages from memory.

Program sequentiality aids prefetching. Two
types of behavior have been found to be charac-
teristic of almost all programs: locality and sequen-
tiality. Locality has two aspects: locality by time
and locality by space.2 Locality by time means that
information recently referenced by a program is like-
ly to be used again soon. That this type of behavior
is observed should be expected from the fact that
programs have loops. Locality by space means that
portions of the address space near the current (or re-
cent) locus of reference (data or instructions) is like-
ly to be referenced in the near future. This type of
behavior is again expected from common knowledge
of programs-related data items (variables, arrays)
are usually stored together, and instructions are
executed sequentially.
Sequentiality is closely related to locality by

space: programs will execute code sequentially, and
when branches do occur, they are usually over short
distances and forward.3 Locality per se is of little aid
in prefetching since it indicates that the most useful
pages are those that have been recently referenced
and are therefore already in memory. The principle
of sequentiality, however, is quite helpful since it in-
dicates that pages (blocks or lines) following the one
accessed are likely to be referenced. As we note
below, it is possible in special cases to correctly
prefetch other than the next sequential block, but
we are concerned for most of this article solely with
sequential prefetching.

Research to determine utility. Equation 1 showed
that the utility of prefetching could be considered
by comparing costs with and without prefetching.
The cost of a demand fetchD can be estimated for a
specific implementation. The cost P for a prefetch
varies depending on how and when the prefetch is

COMPUTER

Previous work in prefetching
Input/output files are usually accessed sequentially44 and

multiple buffering techniques are standard for managing U/O
data streams. Substantial sequentiality can also be seen in
data-base systems,' and studies indicate that prefetching is
very useful there as well. There is less agreement on the utility
of sequential prefetching for pages in a virtual memory system.

Joseph7 experimented with two prefetching algorithms and
concluded that prefetching was not generally useful. Baer and
Sager8 used one of Joseph's algorithms and also ex-
perimented with two simple methods of nonsequential pre-
fetching of pages (prepaging). They found that their best
nonsequential algorithm produced decreases in the page-fault
rate of from 2 percent to 14 percent for a page size of 256
words. The increase in the transfer rate was not indicated.
Their results seemed only moderately sensitive to the prefetch-
ing algorithm. The best algorithm did about 27 percent better
(miss ratio) than the worst in the most extreme case, and also
seemed somewhat sensitive to the page size. Better results
were achieved for small page sizes (256 words) than large ones
(512 words).

In the special case of algorithms with highly predicated data
reference patterns, such as algorithms that operate on arrays,
some researchers have found prepaging to be very helpful.11-
Spaniol14 found prepaging useful, but only, it appeared, when
almost the entire program fit in the allocated memory. In this
case, prepaging simply reads in the program faster. Pooch15
suggested dynamically clustering pages that are referenced
together and fetching clusters when any page in the cluster is
accessed. However, there seems to be some question about
the feasibility of this algorithm for normal system operation.

Sequential prefetching can also be applied to cache and
other high-speed memories. Bennett and Franaczekl8 discuss
an implementation of prefetching for set-associative cache
memories.17-19 Lookahead buffering of instruction fetches is
used in many high-speed pipelined computers; Anderson et
al.20 discuss this for the IBM 360/91. Enger2' is concerned with
prefetching for a writable control store.

initiated and, often, with the load on the system.
However, it can also be approximated for a given
system.
The miss ratio for a given replacement algorithm

can be measured from the program memory-
reference trace, as can other statistics. For simple
sequential prefetching, the miss and transfer ratios
could be calculated from some simple set of program
statistics; but for the class of page-replacement
algorithms that we consider, this becomes hard to
do. Other researchers, such as Joseph12 and Baer
and Sager,3 have distinguished prefetched- pages
from demand-accessed pages, for example, by
reserving a number of page frames for the exclusive
use of such prefetched pages, and thus have been
able to estimate analytically the effectiveness of
prefetching.
The problem that occuirs when prefetched pages

are treated just like any other page is memory pollu-
tion; it is extremely difficult to estimate how much
the miss ratio will be increased, because prefetched
pages clutter up memory and require that other
pages be removed. Elsewhere I have discussed two
methods for approximating the effect of memory
pollution,.but here I will look at prefetching from a
purely experimental and practical point of view.
We are concerned solely with sequential prefetch-

ing whereby, if page i is referenced, only page i + 1
(which is sequentially adjacent in the address space)
is considered for prefetching. Other, more
sophisticated algorithms either require prior
analysis of the program in question or a greater
amount of overhead in performing dynamic
analysis. Our experiments suggest that prefetching
is useful only for cache memories, where such
dynamic analysis is clearly unfeasible. Sequential
prefetching does allow considerable latitude,
however, as to when to initiate a prefetch operation.
To indicate a few possible variants, prefetching can
be done on every memory reference, only at fault
times, only for instruction fetches, or for data ac-
cesses or channel activity,

Experiments with sequential
prefetching strategies

Simulations using IBM 360 instruction traces
were run to study a variety of sequential prefetch-
ing strategies. The four traces used were Watfiv, the
execution of the Watfiv compiler; Watex, the execu-
tion of a combinatorial search program written in
Fortran and compiled by the Watfiv compiler; APL,
an APL program that produces plots at a terminal;
and FFT, the Fast Fourier Transform algorithm
written in AloglW. These simulations were run both
for uniprogramming (using a single trace) and
multiprogramming. In the latter case, the program
(trace) in control of the process was switched every
Q time units (usually 10,000), where each memory
reference required one time unit and each memory
miss required R time units. The replacement
algorithm in all cases was LRU, least recently used,

and the memory mapping algorithm either full or
set associative.

Notation clarifies prefetch strategies. All prefetch
accesses in our experiments are made to the page
with the next sequential (virtual) address after the
currently referenced page. These prefetches can be
initiated on all memory accesses or only when the

Definitions of terms

D
Demand fetch

Fault

Fully associative

LRU
Memory pollution

Miss

Miss ratio

Miss ratio
(demand)
Miss ratio
(prefetch)
P
Prefetching

Prefetch ratio

Q

S-unit

Sequentiality

Set associative

TLB

Transfer ratio

Cost of a demand fetch
Transferring data from a lower level of the
memory hierarchy to a higher level after
the program has required it
The event of a datum being absent from
the cache or niain memory when re-
quested. Often used to refer to main
memory, in which case the term would be
"page fault" or "segment fault"
A page of main memory may reside
anywhere in the cache
Least recently used
The situation that occurs when pages are
prefetched into the cache or main memory
and then not used
The event of a datum being absent from
one of the higher levels of the memory
hierarchy, such as the cache, when need-
ed by the program. Also known in main
memory as a page fault
Fraction-of memory references (to a given
level of the memory hierarchy) resulting in
a miss
Miss ratio with no prefetching

Miss ratio with prefetch

Cost of a prefetch
Transferring data from a lower level of a
memory hierarchy to a higher level before
it is reeded by the program
Number of prefetch data transfers to total
number of memory references
Ouantum size or number of time units
(usually set at 10,000) between program
switches in multiprogramming, where the
time unit is taken to be the time required
by a reference to memory
Storage unit in Amdahl computer, com-
posed of cache memory and its associ-
ated registers, buffers, etc.
Programs generally execute code in the
order of address numbers and branches
are usually forward a short distance
A page of main memory is restricted to a
set of locations in the cache.
Translation lookaside buffer. Used to
quickly translate from virtual to real
addresses
Miss ratio plus prefetch ratio

December 1978 9

reference by the program causes a page fault. If the
prefetching mechanism is implemented entirely in
the hardware, it is feasible to consider prefetching
on every memory reference, which is currently the
case for cache memories but not main memories. For
main-memory -paging, page faults are currently
handled by software, and without hardware support

100

10-1

1 0-2

1 0-3

1 0-4

0 20,000 40,000 60,000
MEMORY SIZE (BYTES)

Figure 2. This miss transfer ratios are given as functions of memory
size for the Watf iv program trace using a page size of 4096 bytes. iwo
different prefetch algorithms are used. P(A,A,A,) means that a
prefetch was initiated on every, memory reference (first A) and that
the prefetched block is always placed at the top of the LRU replace-
ment stack (second A). Both instruction fetches and data reads and
writes caused prefetch operations (third A). P(F,A,A) indicates that
prefetch operations were initiated only when the memory reference
was one which resulted in a page fault (the F).

15

10

5

0

EFFECT OF. PREFETCHING ON MISS RATIO

0 20,000 40,000 60,000
MFMnPV .q17F (RVTF. I

Figure 3. The miss and transfer ratios for two different prefetch
algorithms are shown by giving their value as a multiple of (ratio to)
the miss ratio for the given memory capacity when using only de-
mand fetching. The-APL program trace was used and a page size of
4096 bytes was employed.

10

prefetching is feasible only at fault times. In addi!-
tion, the overhead of prefetching for main memory
includes supervisor-state CPU time to do such
things as execute the page-replacement algorithm,
construct a channel program to accomplish the
transfer, switch tasks, and deal with the I/O inter-
rupt when the fetch is completed.
The total overhead for transferring N (sequential)

pages is only slightly higher than that for transfer-
ring one page, so sequential prefetching is a low-cost
operation. Conversely, prefetching at other than
fault times incurs all of the costs that appear for de-
mand paging except (usually) multiprogramming
idle. Therefore, prefetching at fault times is the only
feasible strategy for software-controlled paging. It
is also possible to limit prefetching to some subset
of all memory references or a subset of those that
cause page faults. For example, only instruction
fetches (or data references) may be allowed to ini-
tiate a prefetch. We experimented with some of
these possibilities as well.
Some researchers have treated prefetched pages

differently from pages that have actually been
referenced since they were fetched. While we do not
choose to make the significant distinctions they
have made, it is still necessary to consider the
replacement status of prefetched pages in a special
manner. When using LRU replacement, normal
memory references always cause the referenced
block to be placed at the top of the LRU stack.22 If a
prefetch reference finds the prefetched block already
in memory, it can either (1) do nothing or (2) move
that block to the top of the LRU stack.

It is necessary to create a notation that
distinguishes these two replacement modes as well
as the times when prefetches are initiated. This
notation is used to specify a prefetch algorithm:

P(x,y,z)

where x indicates that prefetches are initiated
on:

every relevant memory reference (relevant
being subject to z) with A being sub-
stituted for x and A standing for always; or
only at fault times, with x = F;

where y takes on the values of:
A: The prefetched block is always moved to

the head of the stack, or
F: the prefetched block is moved to the

head of the stack only when accessing it
causes a fault;

where z is used to indicate special conditions
on when a prefetch is initiated:

A: for always, subject to the value of x;
I: for only instruction fetches;
D. for only data fetches.

Miss ratio decreases for small page sizes. Our first
set of experiments tested the effect of page size on
the utility of prefetching. Figure 2 shows the
transfer and miss ratios for the Watfiv trace using a
page size of 4096 bytes. The miss ratio almost

COMPUTER

C,,
c-

LU
UL-

cr-

C)cn
CD

c)
0

cr-
cr-
LJ
U-
C/)

z

I-

0
cr-
CD)

CL3

IL-

always increases due to prefetching, and the more
frequent the prefetching (for example, P(A,A,A) as
compared to P(F,A,A)) the higher the miss ratio. The
transfer ratio, which takes into account the total in-
crease in memory traffic, is higher still.

This figure, however, does not present the infor-
mation in its most useful form; it would be more con-
venient to see directly the ratio of the prefetch miss
and transfer ratios to the original miss ratio, since
this comparison is difficult to make visually. Plot-
ting the ratio would also improve the efficiency of
the graphical plots, since all the curves would no
longer run from the upper left to lower right of the
frame. For this reason, Figures 3-12 display the
ratio of each "ratio" (miss ratio, transfer ratio) to
the original nonprefetching miss ratio. Thus, if the
miss ratio due to prefetching is half of what it was,
the point shown will be at a vertical position of 0.5
on the y axis. If the transfer ratio is thereby
doubled, it will appear at 2.0 on the y axis.
Figure 3 shows the effect of prefetching pages of

4096 bytes for the APL trace, and it is clear that
prefetching again performs badly. The fact that the
miss-ratio curve is above 1.0 means that the miss
ratio has increased. It can be seen here, and will also
be evident in most other cases, that prefetching is
generally a better idea for larger memory sizes.
Here, this only means that prefetching degrades
performance less for large memory capacities; in
other cases it indicates that the improvement is
larger. This occurs for two reasons: (1) prefetching
when the memory is small means the page that is
displaced was probably being used, whereas for a
large memory size the page displaced is quite
possibly idle, and (2) prefetching to a large memory
is often a way of more quickly collecting needed
pages without removing a page at all.

Figure 4 shows that, using a page size of 1024
bytes for the APL trace, prefetching performs poor-
ly for small memory sizes but does lead to a slight
decrease in the miss ratio for larger memory sizes.
The same effect is visible in Figure 5, where a page
size of 256 bytes has been used. Prefetching results
in a 70 percent decrease in the miss ratio for only a
10 percent to 20 percent increase in the transfer
ratio for large memory sizes.
For a page size of 32 bytes, as shown in Figure 6,

prefetching seems to be useful independently of the
memory size, although increases in memory size do
increase the effectiveness of prefetching on perform-
ance. For large enough memory sizes, prefetching
reduces the miss ratio to about 15 percent of its
former level at a cost of less than 10 percent in in-
creased transfer ratio.
In all these cases, the more frequently prefetches

take place the bigger the improvement, if any im-
provement at all is experienced. The increased
usefulness of prefetching as page size decreases is
easily explained. The probability of needing a word
that is k words away from the current locus of
reference is generally decreasing with k; thus, for
large page sizes, the probability of actually needing
a prefetched page would decrease faster than the in-

creased size of the page could include additional
words that might be used. Also, the page that is
removed to make room for the prefetched page is
larger, and therefore presumably has more words in
it that might actually be in use by the program.
Figure 7 shows the effect of prefetching pages of

32 bytes for the Watfiv trace; again, the miss ratio
decreases substantially with prefetching. The
shapes of the curves, however, appear to follow no
obvious logic, and the peaks at 12K bytes seem to
be artifacts of the behavior of this particular pro-
gram. In comparing the results to those of Figure 6,
we see a much smaller improvement than occurred
for the APL trace. Even in the best case, the miss
ratio is still about 35 percent of its former level, and

6

4

2

coC')0

cr-
LU
LL.
C')
z

c'-

cm

C')
U-0

cc

0

MEMORY SIZE (BYTES)
Figure 4. The ratio of the miss and transfer ratios when using the
APL trace and a page size of 1024 bytes.

EFFECT OF PREFETCHING ON MISS RATIO

3
APL

CD \ / <PAGE SIZE - 256 BYTES

cc 2 g U \ TRANSFER RATIO P(A,A,A)
LL
rn 2
< ITRANSFER RATIO P(F,A,A)

, - MISS RATIO P(FAA,A)COCL

0

0 20,000 40,000 60,000
MEMORY SIZE (BYTES)

Figure 5. The ratio of the miss and transfer ratios when using the
APL trace and a page size of 256 bytes.

December 1978 1 1

Table 1.
Four-way multiprogramming using different page sizes.

(Watfiv-FFT-Watex-APL; quantum size 0 = 10,000)

2.5

2.0

1.5

1.0

0.5

EFFECT OF PREFETCHING ON MISS RATIO

0.0 I1 1 .' ' ' ' '

0 10,000 20,000 30,000 40,000 50,000
MEMORY SIZE (BYTES)

Figure 6. The ratio of the miss and transfer ratios when using the
APL trace and a page size of 32 bytes shows prefetching to be useful,
Independent of memory size.

2.5 EFFECT OF PREFETCHING ON MISS RATIO

WATFIV
CO - | j PAGE SIZE 32 BYTES
CO

2.0

TRANSFER RATIO P(A,A,A)
ui - | v j 1>\ \\MISS RATIO (64 BYTES)
z 1.5

o 1 0 t / \XXTRANSFER RATIO P(FA,A)

-05 Y <\ ~~~~~~__Xk x<
1.0

U-
0

2 0.5

0 10,000 20,000 30,000
MEMORY SIZE (BYTES)

Figure 7. The ratio of the miss and transfer ratios when using a page
size of 32 bytes and the Watfiv program trace. The miss ratio
decreases with prefetching.

the transfer ratio is 40 percent to 50 percent above
the original miss ratio.

It has been suggested that prefetching simply
takes advantage of spatial locality and that suc-
cessful prefetching implies the need for a larger
page size. Therefore, we note that in Figure 7 the ad-
ditional line labeled "miss ratio (64 bytes)" is the
ratio of the miss ratio for a page size of 64 bytes to
the original 32-byte-page miss ratio. We see that a
page size of 64 bytes produces a miss ratio com-
parable (sometimes higher, sometimes lower) to that
for 32 bytes, but never does as well as the P(A,A,A)
prefetch algorithm. Every miss to a 64-byte page, of
course, transfers twice as many bytes as a miss to a
32-byte page, so the transfer ratio is twice ashigh as
the miss ratio for this case.
Simulations using four traces to imitate normal

multiprogramming operation can be expected to
display results that are less dependent on the in-
dividual peculiarities of each program. Figures 8, 9,
and 10 show the results of simulations using four
traces (Watfiv, Watex, APL, and FFT) for three dif-
ferent values of Q, the quantum size. As before,
prefetching achieves a significant reduction in the
miss ratio for 32-byte pages with only a small in-
crease in the transfer ratio. The effect of the quan-
tum size is minor, and the improvement using
prefetching is consistent over the three values of Q
shown. For a very large value of Q, a program gains
control of the processor and finds that all of its
pages have been removed from the cache. Prefetch-
ing is thus very useful in bringing those pages back.
Its utility is less pronounced for smaller values of Q,
(the probability of removing one's own pages in-
creases), but prefetching is still helpful. Figure 9
also displays the miss ratio for a page size of 64
bytes; the value is again comparable to that for
32-byte pages without prefetching.
Four-way multiprogramming has also been used

for a variety of other page sizes. Some selected ex-
perimental values appear in Table 1. Clear and
significant decreases in the miss ratio occur for page
sizes of 64 and 128 bytes, with only minor increases
in the transfer ratio. For 256-byte pages, the
decrease in the miss ratio is not consistent and the
increase in the transfer ratio is greater. The
measurements for 512-byte pages show large in-

COMPUTER

0

U_'
rnz

'I)

U-
00_CD
4

Table 2.
Miss and transfer ratios for two different prefetch strategies.

Figure 8 (at right). The ratio of the miss and transfer
ratios when using all four (Watfiv, FFT, Watex, and APL)
traces. Multiprogramming was simulated, with a task
switch every 100 memory references. A page size of 32
bytes was used, as was set associate mapping with 64
sets. Also shown Is the ratio of the miss ratio for 64-byte
pages to that for 32-byte pages.

creases in the transfer ratio and no general reduc-
tion in the miss ratio. As before, we see that the fre-
quency of prefetching changes primarily the
magnitude, not the direction, of its effect.
Table 2 presents additional data in line with the

above results.

Instruction or data prefetching only is less suc-
cessful than always prefetching. Instructions are
normally executed sequentially, whereas data-
reference patterns need follow no particular logic.
This suggests that instruction prefetching should
work better than data prefetching. Figures 11 and
12 show experiments in which prefetches were made
only on instruction references (P(A,A,)), only on
data references (P(A,A,D)), and on all memory
references (P(A,A,A)). For small memory sizes, it
can be seen that instruction prefetching is better
than data prefetching, but that when the amount of
available memory increases, data prefetching
becomes superior. The better performance for in-
struction prefetching for small memory sizes is
reasonable from our argument above. Conversely,
one would expect much less pronounced sequentiali-
ty for data access, but it is not unexpected that if a
prefetched block can remain in memory for a
reasonable period of time, it will be used. Variables
that are used together are often stored together,
especially in the case of elements of arrays. It is im-
portant to note, though, that prefetching on every
memory reference is far superior to limiting pre-
fetching to only data or instruction references.

Prefetching reduces overruns. In the Amdahl
470V16, all memory references, including those
made by the I/O channel, pass through the cache (or
high-speed buffer, as it is known in IBM/Amdahl

3

co0

cr

cc
U)

0

Un

cc

U-
0
U)

0

UJ

V)

z

C-
W

<n

LU

U-

0

2

0

1.5

1.0

0.5

EFFECT OF PREFETCHING ON MISS RATIO

0 20,000 40,000
MEMORY SIZE (BYTES)

000 40,000
MEMORY SIZE (BYTES)

60,000

Figure 9. Ratio of miss and transfer ratios when using all four pro-
gram traces, a task switch Interval of 10,000 memory cycles, a page
size of 32 bytes, and a set associative cache with 64 sets.

December 1978

TRANSFER RATI P(A,A,A

TRANSFER RATIO P(F,A,A)
x x

x
- MISS RATIO P(F,A,A) -

o ~ so /MISS RATIO P(A,A,A).-

WATFIV-FFT-WATEX-APL
64 SETS, 02100 PAGE SIZE - 32 BYTES

- I 11111 Il11

WATFIV-FFT-WATEX-APL
64 SETS, 0-10,000 PAGE SIZE - 32 BYTES

, , , I,,,, I,

terminology). While sophisticated channel pro-
grams can transfer several records in one operation,
each single record is usually transferred sequential-
ly. When the cache page size is significantly smaller.
than the mean record size, it is clear that prefetch-
ing would be beneficial in reducing channel misses.
Because the channel is constrained to transmit data
for most devices at a specific, fixed rate, there may
be "overruns." Overruns occur when the buffer can-
not supply data to the channel or accept it as

EFFECT OF PREFETCHING ON MISS RATIO
' ' ' ' ~I' '-

WATFIV-FFT-WATEX-APL
PAGE SIZE - 32 BYTES
64 SETS, Q=50,000

\ TRANSFER RATIO P(A,A,A) -
X

x ~~~~x x

TRANSFER RATIO P(F,A,A)

MISS RATIO P(F,A,A)

/ MISS RATIO P(A,A,A)

I~~~ ~
20,000 40,000

MEMORY SIZE (BYTES)
60,000

Figure 10. Ratio of miss and transfer ratios when simulating
multiprogramming using all four program traces, a task switch inter-
val of 50,000 memory references, a page size of 32 bytes, and a set
associative cache with 64 sets.

EFFECT OF PREFETCHING ON MISS RATIO

_ \/ TRANSFER RATIO P(A,A,A)

- * \ ~~~~~RANF TIO P(A,A, I)

TRANSFER RATIO P(A,A,D)
-r" MISS RATIO P(A,A,I)

- \ MISS RATIO P(A,A,D) / - -
MISS RATIO P(A,AA)

- WATFIV-FFT-WATEX-APL
- AA QITc n=in nnnnAll 017f O DVTCf

20,000 40,000
MEMORY SIZE (BYTES)

60,000

Figure 11. Ratio of miss and transfer ratios when using all four pro-
gram traces, a task switch interval of 10,000 memory references, a
page size of 32 bytes, and a set associative cache with 64 sets. Prefet-
ching only on instruction fetches (P(A,A,I)) is compared with prefet-
ching only on data references (P(A,A,D)), and prefetching on all
memory references (P(A,A,A)).

necessary from the channel and the channel is
forced to abort the I/O operation. Prefetching can
greatly reduce the severity of this problem.

Complicated prefetch strategies not useful. It is
possible to prefetch by waiting for the nth access to
a page rather than prefetching on the first. Alter-
natively, a prefetch might be initiated only when the
latter half (quarter, etc.) of a page is accessed. Still a
third possibility is to look for a pattern of sequential
references within the page. In each of these cases,
the implicit assumption is that prefetches should be
initiated only when the reference pattern has been
found to be sequential. There are two problems with
this approach. If the reference pattern is truly se-
quential, there is every reason to expect that the
prefetch transfer will not be complete by the time
the next block is referenced. As we note in the next
section, prefetches take many (10-20) machine
cycles, and several instructions can be executed in
this period. Therefore, the next page may be ac-
cessed before the prefetch is complete. Second, our
measurements of the usefulness of data prefetching
suggest that, although the next sequential page will
often be used, it may not be used immediately, nor
will the program be observed to be stepping sequen-
tially through memory.

Updating the LRU stack makes little difference.
If a prefetch access finds that the prefetched block
is already in memory, it is not necessary to adjust
the LRU stack to reflect this search. Using our
earlier notation, P(A,A,A) means that we prefetch
on every memory reference and update the LRU
stack for the prefetched line. P(A,F,A) indicates that
this update is performed only for prefetches that
cause faults. Table 3 shows comparative data for
these two cases for the Watfiv, APL, and four-trace
simulations. There is no significant difference in the
two cases. This is consistent with results reported
by me' and by Ragaz and Rodriguez-Rosell,23 look-
ing at a similar question in the context of data-base
data-block prefetching.

Number of sets not significant. Table 4 shows the
result of prefetch experiments using our four-
program simulation for two different set-associative
mapping algorithms. In most cases, there is no
significant difference. It is only in the case of 256
sets and 8K bytes of buffer that prefetch does not
perform relatively as well as for 64 sets. This is
because the 256-set buffer has only one element per
set at 8K, whereas the 64-set buffer has eight pages
per set. Thus, for the 256-set buffer, the probability
that a prefetched page will displace a page in active
use is higher and prefetching is less useful.

Prefetching useful in cache memory. From our
data, it can be seen that simple sequential prefetch-
ing appears to work quite well for very small page
sizes such as 32 and 64 bytes. Conversely, it works
very poorly for the page sizes used to manage main
memory. Since other researchers8 have noted that

14

1.5

0.5

LU

CD

z

c:

(/J

U-
cn

0

CC

0I-

C:

0

2.0

cnC,,0
C-
4:

LU
U-
Cl)a:

c-

C,,cn

C,)

LL.
0

4:.

1.5

1.0

0.5

0.0
0

0-t Z)tl, u-IvU,UUU rbAt bILt - JZ tY I tb
'-I II I

1.0:

COMPUTER

the exact prefetch algorithm makes a minor dif,
ference in the improvement or lack of it, this sug-
gests that prefetching is not suitable for main
memory use. Cache memories, though, have the
potential for greatly improved operation when using
properly implemented prefetching. A much lower
miss ratio can be expected at only a small cost in ad-
ditional transfers. These results hold true for
several different program address traces, and are
largely unaffected by the number of sets or the
stack-reordering algorithm.

Two existing cache memory
implementations

The benefits of prefetching do not automatically
carry over to any arbitrary computer system in
which a prefetching algorithm is implemented.
First, the implementation must be such that
prefetch operations do not impede the normal func-
tioning of the cache. That is, there should be little or
no conflict for cache access or main memory access.
Second, the additional logic must not slow down the
cache cycle time, since in many machines the cache
is the unit that already prevents a faster machine
cycle. Third, a certain amount of additional logic is
required to include prefetching, and if the overall
performance of the machine does not improve faster
than the gate count, prefetching will not be cost ef-
fective. For these reasons we will discuss the de-
tailed design of the cache memories for two large,
modern high-speed computers, the Amdahl 470V/6
and the IBM 370/168.

The Amdahl 470V/6. A large high-speed computer
that implements the IBM 370 series principles of

operation,24 the Amdahl 470V/625 (Figure 13)
typically runs at about four million instructions per
second, although some measurements3 indicate
speeds more than twice that fast. The cycle time is
32.5 nanoseconds, with the fastest instructions ex-
ecuting in two cycles. The implementation is high-
speed ECL LSI.
The cache, or high-speed buffer as it is known, has

a capacity of 16 kilobytes (16,384 bytes), a data path
to the CPU of 4 bytes and to main memrory of 8

(d3
0

cr
U-

cn
z

z

2

U-
0

!a
W_

2.0

1.5

1.0

0.5

0.0

EFFECT OF PREFETCHING ON MISS RATIO

20,000 30,000
MEMORY SIZE (BYTES)

Figure 12. Ratio of miss and transfer ratios, using the APL program
trace, a page size of 32 bytes, and a set associative cache of 64 sets.
The miss and transfer ratios are compared using prefetching on only
data references, only instruction references, and alI memory
references.

Table 3.
Miss and transfer ratios for different LRU stack updating schemes.

Table 4.
Miss and transfer ratios for two different set sizes.

December 1978

RATIO P(A,A,).;
MISS RATIOP(A,A,A;=

- APL, 64 SETS PAGE SIZE 32 BYTES

15

bytes, and is arranged in 32-byte pages (or lines as
Amdahl and IBM call them). It is set associative17
with 256 sets and two pages per set. Main memory
is up to four-way interleaved, using memory
modules with data paths 32 bytes wide. Associated
with each page in the cache are five status bits.
These bits idenitify the source of the last access to
that page (CPU, channel), the state (problem/super-
visor) of the CPU if/when it did the fetch, the state
of the page (modified/unmodified/empty), and the
LRU status of the page (most recently/least recently
used). It is possible (but not currently done) to
employ the source, CPU state, and modified bits in
the replacement algorithm. Main memory is up-
dated by copying back modified pages when they
are removed from the cache.26
The cache and its associated hardware (registers,

buses, etc.) are known as the S (storage) unit. Five
registers in the S unit are used to hold the addresses
of the locations to be accessed. These registers,
called ports, are the operand port, the instruction
port, the channel port, the translate port, and the
prefetch port. The first three are used respectively
for operand store and fetch, instruction fetch, and
channel I/O (remember, channels use the cache also).
The translate port is used in conjunction with the
translation lookaside buffer, a small associative
memory that maintains the correspondence between
recently used pairs of real and virtual addresses.
When this buffer is missing a needed entry, the
translation port is used to do the lookup. The
prefetch port is used for a number of special func-
tions (such as setting the storage key or purging the
lookaside buffer) and for prefetch operations.
Transfers to and from the S unit pass through one of
three data registers, known as the instruction word
register, the operand word register, and the channel
word register.
A complete read of the cache requires four cycles,

known as the P, B1, B2, and R cycles. The P (priori-

Figure 13. The Amdahl 470V/6, the first of the IBM-compatible cen-
tral processors, implements the IBM series 370 instruction set at a
speed of about four million Instructions per second. Its cache
memory has a capacity of 16K bytes, arranged in 32-byte pages.

ty) cycle is used to determine whieh of several possi-
ble competing sources of requests to the cache will
be permitted to use the next cycle (more than one of
the ports may be occupied and be demanding serv-
ice). The BI and B2 cycles are used to actually ac-
cess the cache and the translation lookaside buffer,
to select the appropriate page from the cache, check
to make sure that the contents of the page are valid,
and shift to get at the correct byte location out of
the two-word (8-byte) segment fetched from the
page.

Set-associative mapping is used in the cache,
which means that some of the high-order real-
address bits of the page are used to select a "set" in
the cache that can then be searched associatively to
see if the desired page is actually in the buffer. All
but two of the necessary bits are available initially
from the virtual address, so it is possible to limit the
search of the buffer to four sets of two pages each.
These eight pages are read out, while in parallel the
translation lookaside buffer is accessed to get the
real address corresponding to the virtual address.
Associated with each page in the cache is a set of
tag bits specifying the real memory address from
which this page is taken. The real address, after it is
obtained from the TLB or main memory, is im-
mediately used to narrow the possible page loca-
tions for the desired page to two from the eight that
were possible using the virtual address. The tag bits
from these two pages are then compared with the
real address; if a match is found, then the page is in
the associated page position in the cache. A read
takes four cycles (three excluding the priority cycle).
The time required by a store is longer since it is
essentially a read followed by a modify and a write-
back; it takes six cycles. The operations in the cache
are overlapped (pipelined) in such a way that a read
can be performed once for every cycle or a write once
for every other cycle.
The timing in the event a cache access is unsuc-

cessful-that is, there is a miss-is given in Figure
14.27 The buffer access is shown as beginning with a
B1 cycle (cycle 1). If a move-out is required (write-
back to memory of a modified page), four buffer
cycles (5,6,7,8) are used to copy the modified page to
a special holding register, while at the same time a
main-memory busy cycle starts. The actual transfer
of the fetched page (called a move-in) also requires
four cycles (17,18,19,20). The original fetch opera-
tion is restarted in cycle 21; thus, each cache miss
results in a loss of 20 machine cycles. Particularly
important is the lower part of this diagram, which
shows when the cache is busy and when the main
memory is busy. We shall be especially concerned
with prefetch operations and the extent to which
they interfere with normal cache or main-memory
accesses.
An optional prefetch algorithm is built into the

470V/6 cache but has not been used. It permits a
prefetch to be initiated on either the first or second
access to the page, provided that the access is to the
nth (n = 1,2,3, or 4) or succeeding 8-byte (quarter-
page) section. Prefetching can be selectively enabled

COMPUTER16

0

FETCH MOVE OUT

jB1 B2 R Pr
MOVE IN z FETCH RE-INITIATED

.i ! B1 B2

5 10 15 20 25 30 35 CYCLES

F- READ CYCLE WRITE CYCLE

ACCESS TIME

MAIN MEMORY BUSY
MAIN MEMORY IDLE

CACHE BUSY
l-J- - - CACHE IDLE

i
Figure 14. Cache miss timing, Amdahl 470V/6.

for instruction fetch, operand access, or channel I/O.
Prefetch operations are initiated by placing the
prefetch address in the prefetch port; these prefetch
operations are tagged as such and have the lowest
priority for cache cycles. In addition, any later re-
quest for access to the prefetch port can (optionally)
overwrite a previous but still unexecuted prefetch
request.

The IBM 370/168-3. The IBM 370/168-329,24
(Figure 15) is the fastest IBM computer with virtual
memory capability actually delivered to customer
sites. (At this writing, the model 3033 processor has
not been delivered, and little documentation is
available for it.) The 370/168 is approximately 70
percent as fast as the Amdahl 470V/6 and from a
software point of view appears to be identical. The
Model 3 (168-3), a slight modification of earlier
370/168 models, is slightly faster in some instruc-
tions and has a larger high-speed buffer. The
machine cycle time is 80 nanoseconds, and the
fastest instructions execute in one cycle.
The cache of the 370/168-3 is 32K bytes, arranged

in 128 sets of eight 32-byte pages. The data-path
width to both main memory and the CPU is 8 bytes.
Main memory is interleaved up to four way in
modules 8 bytes wide. Each set in the cache con-
tains eight pages arranged in two groups of four.
Replacement is a two-step process that is "LRU
like." The eight pages in a set are associated in four
pairs. The LRU pair is selected, and then the LRU
page of that pair is the one chosen for replacement.

All storage operations by the CPU are directed to
main memory. Only if a page to be updated is also in
the cache is a write operation made to the cache. The
channels in this machine talk directly to main
memory without using the cache. The buffer in-
validation stack (BI)maintains consistency between
main memory and the cache. Modifications to main
memory from other than the CPU (for example,
from the channel) are entered in the B I stack, and if
the accessed page is found in the cache as well, it is
removed from the cache. (Because of the store-
through operation, main memory is always valid.)

Av40 0;;20,: 0 A0; V0 ff T \t1 fffff0 X
:j0;0^'.. , t.'.,;k,;.S,d,..0 'N'S.'f0 : , Iv

Figure 15. The IBM 3701168 is the largest CPU in the IBM 370 line of
machines (as of 1977). The cache memory of the 168-3 model has a
capacity of 32K bytes, arranged in 128 sets of eight 32-byte pages.

This same mechanism permits IBM's multi-
processor systems (luckily, I believe) to share
memory conveniently.
The timing of the 168 is similar to that of the

470V/6. A priority cycle is used to establish priority.
The tag bits for each page, giving its real memory
address, are stored (unlike the 470) separately from
the page in an address array. The output of the TLB
is compared with the appropriate entries in the ad-

December 1978 17

dress array; if a match is found, the desired two
words of the cache page are gated out onto the buf-
fer data output bus approximately 2'/2 cycles after
the start of the priority cycle. The LRU stack is up-
dated at the same time. The cache operations are
overlapped in such a way that one read can be per-
formed every cycle. A write can be completed within
three cycles.
A fetch from main memory requires 12 cycles un-

til the data has been completely transferred to the
cache. This machine is more clever, however, send-
ing the desired 8 bytes directly to the CPU without
requiring the CPU to read the information out of the
cache; thus, the CPU has what it needs after nine
cycles. (Peuto and Shustek3 find a 6 cycle penalty
for a chache miss; the 9 cycle figure comes from
documentation published by IBM29.)Other accesses
to main memory are inhibited for the period from
2/2 to 111/2 cycles after the start of the priority cycle
forthe fetch.

A good prefetch algorithm must be
well implemented

There are two issues in the design of the cache for
a high-speed computer system: the abstract pre-
fetching algorithm and the detailed implementation.
It is very important to make this distinction and to
pursue each of these issues. Obviously, a good im-
plementation cannot save a bad algorithm, but a
bad implementation can ruin a good algorithm.

Analysis of these IBM and Amdahl
computers indicates that certain design
changes could implement prefetching

effectively.

On the basis of the discussion in the previous sec-
tion, it is simple to choose both a prefetching
algorithm and some cache design parameters:
prefetch the next sequential page on every memory
reference, use a set size of at least two, have fairly
small pages (say, 32 bytes), and omit updating the
LRU status of prefetched pages (since it does not
appear to matter.)
The design of the prefetching implementation is a

matter of recognizing the possible costs in prefetch-
ing and then creating mechanisms to avoid or
minimize these costs. To do a prefetch, it is
necessary to access the cache, but this access must
not interfere with regular use of the cache by the
program. The transfer of a page from main memory
to cache, and possibly the reverse, means that the
main memory module(s) involved will be busy for a
read and possibly a write cycle. The actual move-in
and move-out from the cache require cache cycles
and thus may interfere with normal buffer access.
Finally, the TLB is also a possible point of conten-
tion, and prefetch access to it must not unduly in-
terfere with regular use.

It is worth pointing out that all of the calculated
advantages of prefetching may not materialize.
Even though a prefetch is "successful," in that a
prefetched page is then used, the prefetch transfer
may not be complete before the page is actually
referenced. Factors such as this must be considered
in calculating the expected benefits.

Efficient implementation of prefetching. Our
design is based on the type of organization dis-
cussed in the last section and involves relatively
minor departures from the descriptions given.
The first possible cost for prefetching is conten-

tion for the buffer cycles used to test whether a
prefetched page is actually in the cache. If there are
enough unused cache cycles, a design similar to that
used in the 470V/6 would work. That is, prefetch
cycles would be normal cache cycles, but would be
requested at very low priority so as not to interfere
with normal operation. It is not reasonable to
assume that there are spare cache cycles, however,
and therefore we make the following observation:
the prefetched page is never in the same set as the
page being accessed. If the circuitry that reads out
and examines tag bits and selects the right page
were duplicated, then it would be possible to do
prefetch accesses in parallel with the normal lookup,
and with no memory interference. Actually, as ex-
plained below, it may be necessary to duplicate only
the readout circuitry.
Cache lookups are done by comparing the real ad-

dress of the desired page against the tag bits from
the appropriate set of the cache. The real address of
the prefetched page is required for this lookup just
as the real address of the accessed page is. The real
address of the prefetched cache page, however, can
almost always be computed without the use of the
TLB since the prefetched cache page is almost
always in the same main memory page and therefore
has the same high-order real-address bits; only when
a page boundary is crossed would a TLB lookup be
needed. (This case is so rare that prefetches could be
omitted.) For example, 32-byte cache pages and
4096-byte main memory pages imply that only one
time in 128 (0.78 percent) would a main-memory
page boundary be crossed. We also note that, since
the prefetch page address is computed from the nor-
mal page address, it is therefore available slightly
later than the information for the regular access. If
this delay is adjusted properly and the circuitry is
fast enough, it may be possible to use the same set
of comparators to search the tag bits. (The prefetch
usually is not urgent and can easily be delayed a
fraction of a cycle or more.)

If a prefetch access finds the desired page missing
from the cache, it is necessary to (1) schedule a
move-in of the prefetched page and (2) a move-out, if
any is needed, of the page to be expelled from the
cache. To minimize interference, we create two buf-
fers, the move-in buffer and the move-out buffer.
The move-out buffer is used to hold moved-out data
until the appropriate main memory module is ready
to accept the data. If this is the same main memory

COMPUTER18

module as was affected by the move-in, the move-in
takes precedence for access to main memory. The
move-in buffer is used to hold a prefetched page
until cache cycles are available to receive it. It is not
needed for demand move-ins.
A priority is associated with each access request

to the cache, and we likewise assign priorities to
prefetch move-in and move-out requests. Move-out
cycles are issued at a low priority (compared to most
cache accesses) until a timer indicates that a de-
mand move-in is imminent, at which time the priori-
ty changes to high. Move-in requests are also issued
at two levels of priority, low and high. Low priority
is used for a prefetch request, and the page to be
moved in is kept in the move-in buffer temporarily.
Move-ins due to genuine misses always occur at
high priority and bypass the move-in buffer. A de-
mand fetch also causes a move-out-from the set in-
to which the incoming page will be placed-to pro-
ceed at high priority so that there is somewhere to
put the fetched page. Both the move-in and the
move-out buffers can be designed to hold more than
one cache page, but more detailed studies than this
one are required to determine whether this is useful;
it appears unlikely to me. It may happen that a line
that is accessed is actually in the process of being
either moved in or moved out and is therefore resi-
dent in the move-in or move-out buffer. It must be
possible to recognize this possibility and deal with it
correctly. This is a good reason to keep the move-in
and move-out buffers small (say, of capacity 1) and
to avoid significant additional hardware complexity.

Prefetch transfers that are initiated while a
previous prefetch is in progress can either be queued
(up to some limited number) or discarded. Again,
more detailed simulations, using actual operation-
times, are required.

CPU efficiency increased. We identified four ma-
jor costs in doing prefetching: prefetch lookup,
move-in and move-out cycles, busy main memory,
and TLB contention. Prefetch lookup is done in
parallel, TLB accesses are rarely needed for
prefetch, and move-ins and move-outs for prefetch-
ing have been buffered, so the cost of prefetching
consists primarily of main-memory module-access
conflicts and occasional unbuffered move-in or
move-out conflicts. In addition, we must consider
access to prefetched but unarrived pages. We con-
sider each of these by examining the Amdahl
machine.
A prefetch could possibly degrade system opera-

tion by busying main memory modules that would
otherwise be able to more quickly satisfy a demand
fetch. The effect of this factor can be estimated by
considering the timing diagram (Figure 14) and
some operating statistics for the 470V/6. The
machine runs without prefetching at about a 5 per-
cent miss ratio to cache, makes about two memory
references per instruction, and has slightly over 30
million buffer cycles per second. Therefore, approxi-
mately one-fourth of all buffer cycles are used (at 4
mips), and a miss occurs about once every 80 cycles.

December 1978

Demonstration: Reader Service Number 2
Literature only: Reader Service Number 3

The main memory cycle time is 16 cycles; therefore,
the probability that a miss occurs while a main
memory module is busy servicing a prefetch is ap-
proximately 18 percent. If we assume that this miss
is equally likely to occur at any time during those 16
cycles (a pessimistic assumption), this is an ex-
pected penalty of 0.18 x 8 x 0.25 = 0.36 cycles (since
main memory is interleaved four ways) or an in-
crease of 1.8 percent in the delay for a miss.
As we observed above, it is possible that a pre-

fetched page will be needed before its fetch is com-
plete. In Figure 16 we show the time (in memory
references) between the time a (useful) prefetch is
begun (using P(A,F,A), P(A,F,I) and P(A,F,D) pre-
fetching and a cache size of 16K) and the time the
prefetched page is first accessed, broken down by in-
struction and data references. Using the calculation
that one memory reference occurs every four
machine cycles, only 10 percent to 15 percent of all
successful prefetches would occasion a delay. Again
we assume that the prefetch transfer is half com-
plete at the time the page is needed. Then 10 percent
to 15 percent of the time, half of the value of the
prefetch is lost, which is a minor problem.
The effective instruction execution time for the

Amdahl 470V/6 is on the order of five to six machine
cycles.3 For a miss ratio of 5 percent and two
memory references per instruction, this is a penalty
of two cycles on top of the mean instruction time,
which is a slowdown of 25 percent to 30 percent. Our
experiments earlier suggest that the miss ratio can
be cut at least in half by prefetching, and we further
found that most of this cut in the miss ratio can be
reflected in improved performance. Therefore, we
could expect improvements in CPU performance of
10 to 25 percent for sequential cache prefetching.

TIME BETWEEN PREFETCH AND USE

20 30 4
TIME - MEMORY REFERENCES

40 50

Figure 16. Cumulative probability distribution of the time between
prefetching a page from memory and actually referencing a pre-
fetched page. Results are shown for the APL program trace, the
Watfiv program trace, and multiprogramming using all four program
traces.

Prefetching improves performance
at low cost

Prefetching pages of information stored in a cache
memory can improve the performance of large com-
puter systems significantly if the prefetching
strategy is properly implemented. Our experiments
indicate that if prefetching is used with very small
page sizes, such as 32 or 64 bytes, it can be effective,
whereas prefetching large pages (e.g., 1024-4096
bytes) is more likely to degrade performance than
enhance it. Since pages of that small size are typical-
ly used in cache memories, it appears that the cache
is the level within the memory hierarchy at which to
implement prefetching. Although the existing
cache-memory implementations we studied would
have to be modified to accommodate an efficient
prefetching strategy, the potential improvements in
CPU speed-on the order of 10 percent to 25
percent-would seem to be worth the expense of
modification. -

Acknowledgment

This research was partially supported by the Na-
tional Science Foundation under Grant
MCS75-06768. Computer time was provided by the
Energy Research and Development Administration
under Contract E(04-3)515 and by the Department
of Energy under Contract EY-76-C-03-0515.

References

1. A. J. Smith, Sequentiality and Prefetching in Data
Base Systems, IBM Research Report RJ 1743, Mar.
1976. Also in ACM Transactions on Data Base
Systems, Sept. 1978, pp. 223-247.

2. P. J. Denning, "On Modeling Program Behavior,"
AFIPS Conf Proc., Vol. 40, 1972 SJCC, pp. 937-944.

3. B. L. Peuto and L. J. Shustek, "An Instruction Tim-
ing Model of CPU Performance," Proc. Fourth An-
nual Symp. Computer Arch., College Park, Md., Mar.
1977, pp. 165-178.

4. A. J. Smith, "A Locality Model for Disk Reference
Patterns," Digest of Papers, COMPCON 75 Spring,
San Francisco, Calif., pp. 109-113.

5. A. J. Smith, "Analysis of a Locality Model for Disk
Reference Paterns," Proc. Second Conference on In-
formation Sciences and Systems, The Johns Hopkins
University, Baltimore, Md., Apr. 1976, pp. 593-601.

6. A. J. Smith, "On the Effectiveness of Multiple Arm
and Buffered Disks," Proc. Fifth Annual Symp. Com-
puter Arch., Palo Alto, Calif., Apr. 1978, pp. 242-247.

7. M. Joseph, "An Analysis of Paging and Program
Behavior," The Computer Journal Vol. 13, No. 1,
Feb. 1970, pp. 48-54.

8. J. L. Baer and G. R. Sager, "Dynamic Improvement
of Locality in Virtual Memory Systems," IEEE
Trans. Soft. Eng., Vol. SE-2, No. 1, Mar. 1976, pp.
54-62.

COMPUTER

1.0
0.8
0.6
0.4

>- 0.2
J 0.0

' 0.8
0
O 0.6
, 0.4
< 0.2
-j

2 0.0
6, 0.8

0.6
0.4
0.2

0.0

P(A,F,lI) . P(A,F,A) \

+4++++++ ++++++4

XXX XXXX XXXXXXXXX XXXXXXXXXX XX

+ APL
++ P(A,F,D) PAGE SIZE - 32 BYTES -

I...
+ +++±+++++ +++++++++ + ++.
-P(A,F,A)

< X X X X /XX X x x x X XXt
P(A, F, D) WATFIV

MEMORY SIZE - 16K -

I I I I IIxI x x x iKi ITh
X X X X X X XAFDI,/S~~4SETS,QlO 0,000

P(A,',D' WATFIV-FFT-WATEX-APL
,,, , , 1,II

T'i

-r,94

20

9. D. E. Gold and D. J. Kuck, "A Model for Masking
Rotational Latency by Dynamic Disk Allocation,"
CACM, Vol. 17, No. 5, May 1974, pp. 278-288.

10. K. S. Trivedi, Prepaging and Applications to the
STAR-100 Computer, Report 76-28, ICASE, NASA
Langley Research Center, Hampton, Va., Aug. 1976,
republished in Proc. Symp. High Performance Com-
puter and Algorithm Organization, Champaign, Ill.,
Apr. 1977.

11. K. S. Trivedi, "Prepaging and Applications to Array
Algorithms," IEEE Trans. Computers, Vol. C-26, No.
9, Sept. 1976, pp. 915-921.

12. K. S. Trivedi, An Analysis of Prepaging, Computer
Science Report CS-1977-7, Duke University,
Durham, N.C., Aug. 1977.

13. K. S. Trivedi, "On the Paging Performance of Array
Algorithms," IEEE Trans. Computers, Vol. C-27, No.
10, Oct. 1977, pp. 938-947.

14. 0. Spaniol, "Demand Prepaging Algorithms Based
on a Model of Locality of Programs," Workshop on
Computer Architectures and Networks, IRIA, Roc-
quencourt, France, Aug. 1974.

15. U. W. Pooch, "A Dynamic Clustering Strategy in a
Demand Paging Environment," Proc. Symp. Simula-
tion of Computer Systems, National Bureau of Stan-
dards, Boulder, Colo., Aug. 1976, pp. 11-22.

16. B. T. Bennett and P. A. Franaczek, "Cache Memory
with Prefetching of Data by Priority," IBM
Technical Disclosure Bulletin, Vol. 18, No. 12, May
1976, pp. 4231-4232.

17. C. J. Conti, "Concepts for Buffer Storage," IEEE
Computer Group News, Mar. 1969, pp. 9-13.

18. R. M. Meade, "Design Approaches for Cache
Memory Control," Computer Design, Vol. 10, No. 1,
Jan. 1971, pp. 87-93.

19. A. J. Smith, "A Comparative Study of Set
Associative Memory Mapping Algorithms and Their
Use for Cache and Main Memory," IEEE Trans. Soft.
Eng., Vol. SE-4, No. 2, Mar. 1978, pp. 121-130.

20. D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo,
"The IBM/360 Model 91: Machine Philosophy and
Instruction Handling," IBMJ. Res. and Devel., Jan.
1967, pp. 8-24.

21. T. A. Enger, "Paged Control Store Prefetch
Mechanism," IBM Technical Disclosure Bulletin,
Vol. 16, No. 7, Dec. 1973, pp. 2140-2141.

22. R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger, " Evaluation Techniques for Storage Hierar-
chies," IBM Sys. J., Vol. 9, No. 2, pp. 78-117.

23. Niklaus Ragaz and Juan Rodriguez-Rosell, Empirical
Studies of Storage Management in a Data Base
System, IBM Research Report RJ 1834, Oct. 1976.

24. System/370 Principles of Operation, GA22-7000,
IBM Corp., Armonk, N.Y., 1975.

25. 470V/6 Machine Reference Manual, Amdahl Corp.,
1976.

26. A. J. Smith, "Characterizing the Storage Process and
Its Effect on the Update of Main Memory by Write-
Through," to appear, JACM, Jan. 1979.

27. R. Tobias, Amdahl Corporation, private communica-
tion, 1977.

28. IBM Systemn360 and System/370 Model 195 Func-
tional Characteristics, GA22-6943-2, IBM Systems
Development Division, Poughkeepsie, N.Y., 1971.

29. System/370 Model 168 Theory of Operation/Diagrams
Manual, Vol. 1, Introduction (SY22-6931-1), Vol. 4,
Processor Storage Control Function (SY22-6934-1),
IBM Systems Products Division, Poughkeepsie,
N.Y., 1975.

l_MgAlan Jay Smith is an assistant pro-
fessor in the Computer Science Divi-
sion of the Department of Electrical
Engineering and Computer Sciences
and the Electronics Research Labor-
atory, University of California,
Berkeley, a position he has held since
1974. He also holds a joint appoint-
ment at the Lawrence Berkeley Labor-
atory. His research interests include

the, analysis and modeling of computer systems and
devices, operating systems, computer architecture, and
data compression.
He received the BSEE from the Massachusetts In-

stitute of Technology and the MS and PhD in computer
science from Stanford University.
Smith is a member of the IEEE, the ACM, the Society

for Industrial and Applied Mathematics, Eta Kappa Nu,
Tau Beta Pi, and Sigma Xi.

DESCRIPTION
PURCHASE

PRICE 12 MOS.
PER MONTH

24 MOS. 36 MOS.

DECwriter II$1,495 $145 $ 75
DECwriter III, KSR 2,195 210 112
DECwriter III, RO 1,995 190 102
DECprinter I 1,795 172 92
VT100 CRT DECscope 1,595 153 81
TI 745 Portable 1,875 175 94
TI 765 Bubble Mem.... 2,995 285 152
TI 810 RO Printer 1,895 181 97
TI 820 KSR Terminal .. 2,395 229 122
QUME, Ltr. Qual. KSR. 3,195 306 163
QUME, Ltr. Qual. RO .. 2,795 268 143
ADM3ACRT.......... 875 84 45
HAZELTINE 1400 CRT. 845 81 43
HAZELTINE 1500 CRT 1,195 115 67
HAZELTINE 1520 CRT. 1,595 153 81
DataProducts 2230 7,900 725 395
DATAMATE Mini floppy 1,750 167 89

FULL OWNERSHIP AFTER 12 OR 24 MONTHS
10% PURCHASE OPTION AFTER 36 MONTHS

$ 52
77
70
63
56
65
99
66
84

112
98
30
30
42
56

275
61

ACCESSORIES AND PERIPHERAL EQUIPMENT
ACOUSTIC COUPLERS * MODEMS * THERMAL PAPER

RIBBONS * INTERFACE MODULES * FLOPPY DISK UNITS
*S~~~~~~~~. kI 1a

_ RA-SNET CORPORA TION
2005 ROUTE 22, UNION, N.J 07083

201-688-7800
Reader Service Number 4

December 1978

I k, El" 9:101 IT,0 liftil k, Ri k, 1:41

1=1111IFT-1k,

21

