Douglas M. Blough received the B.S. degree in electrical engineering and the M.S. and Ph.D. degrees in computer science from The Johns Hopkins University, Baltimore, MD, in 1984, 1986, and 1988, respectively. Since Fall 1999, he has been Professor of Electrical and Computer Engineering at the Georgia Institute of Technology, where he also holds an adjunct appointment in the School of Computer Science and is Co-Director of the NSF Industry-University Cooperative Research Center on Experimental Research in Computer Systems (CERCS). From 1988 to 1999, he was on the faculty of Electrical and Computer Engineering at the University of California, Irvine.

He has been researching dependable systems and networks since 1987, with contributions in the areas of fault diagnosis, clock synchronization, identity management, privacy, on-chip fault tolerance, distributed storage systems, P2P networks, multicomputer networks, and various aspects of wireless networks including self organization. In addition to his academic research, he has contributed to the development and evaluation of the COSMOS operating system at NASA JPL, led the design and implementation of a middleware-based fault injection software system for Raytheon and the U.S. Navy, and performed an architecture study for the DARPA self-regenerative systems project.

His involvement with DSN and FTCS goes back to 1987, when he published his first paper at FTCS-17. He was Program Co-Chair of the inaugural DSN in 2000 in New York City and is General Chair for DSN 2014, which will be in Atlanta. He has served on the FTCS/DSN Program Committees numerous times and was Student Forum Chair for DSN 2010. He has also helped to organize several other dependability-related events:

- Program Chair: “Reliability and Dependability” track, ICDCS 2008
- Program Chair: Pacific Rim International Symposium on Fault-Tolerant Systems (now PRDC), 1995
- Program Committee Member: Symposium on Reliable Distributed Systems, 2003, 2005, and 2008

Position Statement:
-------------------

The dependability community's glass - half full or half empty?

The dependable computing community, as represented by TCFT, has long been at the forefront of research in dependability and fault tolerance, and DSN, our flagship conference, is widely recognized as "the" leading world-wide forum for that research. In addition, dependability continues to grow in importance as more and more systems become fully automated and cybersecurity threats emerge at a continually accelerating pace.

At the same time, our community faces some of the same issues that have been with us for some time. These include, among others:

1) how to keep the community vibrant by continuously attracting new researchers?

2) how to increase engagement with dependability practitioners in industry?

3) how to attract the best dependability research to DSN, in the face of a proliferation of conferences in different areas that include dependability as one of the topics of interest?

These problems are interrelated and, therefore, require coordinated solutions. I believe the current efforts to reformat DSN in order to allow the conference to be more flexible over time are important and should be strongly supported. Changes that allow DSN to more easily integrate new important themes as they
emerge and retire ones that have served their purpose are critical to dealing with Issues 1) and 3). Additionally, the dependability community must commit to a significant outreach effort to address all of these issues. This includes outreach both to industry and to related research communities. As a community, we should work to substantially increase the number of high-quality practical experience reports that are presented annually at DSN. Also, we should pursue targeted outreach to other communities, e.g. security and embedded systems, to increase cross-fertilization opportunities and help to maintain the vibrancy of our community with corresponding benefits to the other communities as well.

By pursuing these goals, and with the help of all of the TCFT membership, I believe we can continue to improve DSN and maintain a vibrant and relevant dependability community.