IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) is a scholarly archival journal published monthly. This journal covers traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence. Read the full scope of TPAMI.

From the August 2015 issue

Fast Edge Detection Using Structured Forests

By Piotr Dollar and C. Lawrence Zitnick

Featured article thumbnail imageEdge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain measures may be evaluated. The result is an approach that obtains realtime performance that is orders of magnitude faster than many competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our learned edge models generalize well across datasets.

download PDF View the PDF of this article      csdl View this issue in the digital library

Editorials and Announcements



Guest Editorials

Reviewers List

Annual Index

Access recently published TPAMI articles

RSSSubscribe to the RSS feed of latest TPAMI content added to the digital library

Mail Sign up for the Transactions Connection newsletter.