From the January 2015 issue

From Shading to Local Shape

By Ying Xiong, Ayan Chakrabarti, Ronen Basri, Steven J. Gortler, David W. Jacobs, and Todd Zickler

Featured article thumbnail imageWe develop a framework for extracting a concise representation of the shape information available from diffuse shading in a small image patch. This produces a mid-level scene descriptor, comprised of local shape distributions that are inferred separately at every image patch across multiple scales. The framework is based on a quadratic representation of local shape that, in the absence of noise, has guarantees on recovering accurate local shape and lighting. And when noise is present, the inferred local shape distributions provide useful shape information without over-committing to any particular image explanation. These local shape distributions naturally encode the fact that some smooth diffuse regions are more informative than others, and they enable efficient and robust reconstruction of object-scale shape. Experimental results show that this approach to surface reconstruction compares well against the state-of-art on both synthetic images and captured photographs.

download PDF View the PDF of this article      csdl View this issue in the digital library


Editorials and Announcements

Announcements

Editorials

Guest Editorials

Call for Papers

Reviewers List

Annual Index


Access recently published TPAMI articles

RSSSubscribe to the RSS feed of latest TPAMI content added to the digital library

Mail Sign up for the Transactions Connection newsletter.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) is a scholarly archival journal published monthly. This journal covers traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence.
Read the full scope of TPAMI