The Community for Technology Leaders
RSS Icon
Subscribe
Mar. 25, 2009 to Mar. 27, 2009
ISBN: 978-0-7695-3593-7
pp: 71-76
ABSTRACT
Handling of many-objective problems is a hot issue in the evolutionary multiobjective optimization (EMO) community. It is well-known that frequently-used EMO algorithms such as NSGA-II and SPEA do not work well on many-objective problems whereas they have been successfully applied to a large number of test problems and real-world application tasks with two or three objectives. The main difficulty in the handling of many-objective problems is that almost all solutions in the current population of an EMO algorithm are non-dominated with each other. This means that Pareto dominance relation can not generate enough selection pressure toward the Pareto front. As a result, Pareto dominance-based EMO algorithms such as NSGA-II and SPEA can not drive the current population toward the Pareto front efficiently in a high-dimensional objective space of a many-objective problem. A simple idea for introducing additional selection pressure toward the Pareto front is the use of scalarizing fitness functions. In this paper, we examine the effect of using weighted sum fitness functions for parent selection and generation update on the performance of NSGA-II for many-objective 0/1 knapsack problems.
INDEX TERMS
Many-objective problems, Evolutionary multiobjective optimization, NSGA-II, Weighted sum fitness functions
CITATION
Hisao Ishibuchi, Noritaka Tsukamoto, Yusuke Nojima, "Empirical Analysis of Using Weighted Sum Fitness Functions in NSGA-II for Many-Objective 0/1 Knapsack Problems", UKSIM, 2009, Computer Modeling and Simulation, International Conference on, Computer Modeling and Simulation, International Conference on 2009, pp. 71-76, doi:10.1109/UKSIM.2009.54
14 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool