The Community for Technology Leaders
RSS Icon
Subscribe
Toronto, ON
June 25, 2007 to June 27, 2007
ISBN: 0-7695-2837-3
pp: 52
Ahmed Metwally , University of California, Santa Barbara
Divyakant Agrawal , University of California, Santa Barbara
Amr El Abbad , University of California, Santa Barbara
Qi Zheng , FastClick, Inc.
ABSTRACT
Click fraud is jeopardizing the industry of Internet advertising. Internet advertising is crucial for the thriving of the entire Internet, since it allows producers to advertise their products, and hence contributes to the well being of ecommerce. Moreover, advertising supports the intellectual value of the Internet by covering the running expenses of the content publishers? sites. Some publishers are dishonest, and use automation to generate traffic to defraud the advertisers. Similarly, some advertisers automate clicks on the advertisements of their competitors to deplete their competitors? advertising budgets. In this paper, we describe the advertising network model, and discuss the issue of fraud that is an integral problem in such setting. We propose using online algorithms on aggregate data to accurately and proactively detect automated traffic, preserve surfers? privacy, while not altering the industry model. We provide a complete classification of the hit inflation techniques; and devise stream analysis techniques that detect a variety of fraud attacks. We abstract detecting the fraud attacks of some classes as theoretical stream analysis problems that we bring to the data management research community as open problems. A framework is outlined for deploying the proposed detection algorithms on a generic architecture. We conclude by some successful preliminary findings of our attempt to detect fraud on a real network.
CITATION
Ahmed Metwally, Divyakant Agrawal, Amr El Abbad, Qi Zheng, "On Hit Inflation Techniques and Detection in Streams of Web Advertising Networks", ICDCS, 2007, 27th International Conference on Distributed Computing Systems (ICDCS '07), 27th International Conference on Distributed Computing Systems (ICDCS '07) 2007, pp. 52, doi:10.1109/ICDCS.2007.124
5 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool