This Article 
 Bibliographic References 
 Add to: 
Cores of Swirling Particle Motion in Unsteady Flows
November/December 2007 (vol. 13 no. 6)
pp. 1759-1766
In nature and in flow experiments particles form patterns of swirling motion in certain locations. Existing approaches identify these structures by considering the behavior of stream lines. However, in unsteady flows particle motion is described by path lines which generally gives different swirling patterns than stream lines. We introduce a novel mathematical characterization of swirling motion cores in unsteady flows by generalizing the approach of Sujudi/Haimes to path lines. The cores of swirling particle motion are lines sweeping over time, i.e., surfaces in the space-time domain. They occur at locations where three derived 4D vectors become coplanar. To extract them, we show how to re-formulate the problem using the Parallel Vectors operator. We apply our method to a number of unsteady flow fields.

[1] D. Banks and B. Singer., A predictor-corrector technique for visualizing unsteady flow. IEEE TVCG, 1 (2): 151–163, 1995.
[2] D. Bauer and R. Peikert., Vortex tracking in scale space. In DataVisualization 2002. Proc. VisSym 02, pages 233–240, 2002.
[3] R. Bürger,R. Peikert,H. Hauser,F. Sadlo,, and P. Muigg., Extending parallel vectors criteria for unsteady vortices. Technical Report TR-VRVis-2007-021, VRVis, 2007.
[4] E. Caraballo,M. Samimy,, and D. J., Low dimensional modeling of flow for closed-loop flow control. AIAA Paper 2003-0059.
[5] G. Haller., An objective definition of a vortex. J. Fluid Mech., 525: 1–26, 2005.
[6] J. Helman and L. Hesselink., Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22 (8): 27–36, August 1989.
[7] J. Hunt., Vorticity and vortex dynamics in complex turbulent flows. Proc CANCAM, Trans. Can. Soc. Mec. Engrs, 11: 21, 1987.
[8] J. Jeong and F. Hussain., On the identification of a vortex. J. Fluid Mechanics, 285: 69–94, 1995.
[9] NASA Langley Research Center. Wake vortex study at wallops island, May 1990. http://nix.larc.nasa.govinfo?id=EL-1996-00130&orgid=1.
[10] R. Peikert and M. Roth., The parallel vectors operator - a vector field visualization primitive. In Proc. IEEE Visualization 99, pages 263–270, 1999.
[11] F. Post,B. Vrolijk,H. Hauser,R. Laramee,, and H. Doleisch., Feature extraction and visualisation of flow fields. In Proc. Eurographics 2002, State of the Art Reports, pages 69–100, 2002.
[12] M. Roth and R. Peikert., A higher-order method for finding vortex core lines. In Proc. IEEE Visualization 1998, pages 143–150, 1998.
[13] J. Sahner,T. Weinkauf,, and H.-C. Hege., Galilean invariant extraction and iconic representation of vortex core lines. In Proc. EuroVis 2005, pages 151–160, 2005.
[14] J. Sahner,T. Weinkauf,N. Teuber,, and H.-C. Hege., Vortex and strain skeletons in eulerian and lagrangian frames. IEEE TVCG, 13 (5), 2007.
[15] D. Stalling,M. Westerhoff,, and H.-C. Hege., Amira: A highly interactive system for visual data analysis. The Visualization Handbook, pages 749–767, 2005.
[16] D. Sujudi and R. Haimes., Identification of swirling flow in 3D vector fields. Technical report, Department of Aeronautics and Astronautics, MIT, 1995. AIAA Paper 95-1715.
[17] H. Theisel,J. Sahner,T. Weinkauf,H.-C. Hege,, and H.-P. Seidel., Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking. In Proc. IEEE Visualization 2005, pages 631–638, 2005.
[18] H. Theisel and H.-P. Seidel., Feature flow fields. In Data Visualization 2003. Proc. VisSym 03, pages 141–148, 2003.
[19] H. Theisel,T. Weinkauf,H.-C. Hege,, and H.-P. Seidel., Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE TVCG, 11 (4): 383–394, 2005.
[20] X. Tricoche,T. Wischgoll,G. Scheuermann,, and H. Hagen., Topology tracking for the visualization of time-dependent two-dimensional flows. Computers & Graphics, 26: 249–257, 2002.
[21] T. Weinkauf,H. Theisel,H.-C. Hege,, and H.-P. Seidel., Feature flow fields in out-of-core settings. In H. Hauser, H. Hagen, and H. Theisel, editors, Topology-based Methods in Visualization, Mathematics and Visualization, pages 51–64. Springer, 2007.
[22] H.-Q. Zhang,U. Fey,B. Noack,M. König,, and H. Eckelmann., On the transition of the cylinder wake. Phys. Fluids, 7 (4): 779–795, 1995.

Index Terms:
unsteady flow visualization, feature extraction, particle motion
Tino Weinkauf, Jan Sahner, Holger Theisel, Hans-Christian Hege, "Cores of Swirling Particle Motion in Unsteady Flows," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1759-1766, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70545
Usage of this product signifies your acceptance of the Terms of Use.