
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
William Barth, Christopher Burns, "Virtual Rheoscopic Fluids for Flow Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 17511758, November/December, 2007.  
BibTex  x  
@article{ 10.1109/TVCG.2007.70610, author = {William Barth and Christopher Burns}, title = {Virtual Rheoscopic Fluids for Flow Visualization}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {13}, number = {6}, issn = {10772626}, year = {2007}, pages = {17511758}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70610}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Virtual Rheoscopic Fluids for Flow Visualization IS  6 SN  10772626 SP1751 EP1758 EPD  17511758 A1  William Barth, A1  Christopher Burns, PY  2007 KW  Flow visualization KW  rheoscopic fluids. VL  13 JA  IEEE Transactions on Visualization and Computer Graphics ER   
[1] C. D. Andereck, S. S. Liu, and H. L. Swinney, Flow regimes in a circular couette system with independently rotating cylinder. J. Fluid Mech., 4: 155–183, 1986.
[2] W. L. Barth, Simulation of NonNewtonian Fluids on Workstation Clusters. PhD thesis, The University of Texas at Austin, May 2004.
[3] W. L. Barth and G. F. Carey, Extension of the cht01 natural convection benchmark problem to nonnewtonian fluids. In Proceedings of CHT04: ICHMT International Symposium on Advances in Computational Heat Transfer, Norway, April 2004. ICHMT.
[4] W. L. Barth and G. F. Carey, On a natural convection benchmark problem in nonnewtonian fluids. Numerical Heat Transfer, Part B, 50: 193–216, 2006.
[5] D. Blythe, The Direct3D 10 system. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, pages 724–734, New York, NY, USA, 2006. ACM Press.
[6] G. F. Carey, R. McLay, W. Barth, S. Swift, and B. Kirk, Distributed parallel simulation of surface tension driven viscous flow and transport processes. In Computational Fluid Dynamics: Proceedings of the Fourth UNAM Supercomputing Conference, pages 143–155. UNAM, June 2000.
[7] G. de Vahl Davis, Laminar natural convection in an enclosed rectangular cavity. International Journal of Heat and Mass Transfer, 11: 1675–1693, April 1968.
[8] G. de Vahl Davis, Natural convection of air in a square cavity: A bench mark numerical solution. IJNMF, 3: 249–264, 1983.
[9] G. de Vahl Davis and I. P. Jones, Natural convection in a square cavity: A comparison exercise. IJNMF, 3: 227–248, 1983.
[10] K. Engel, M. Hadwiger, J. M. Kniss, C. RezkSalama, and D. Weiskopf, RealTime Volume Graphics. A. K. Peters Ltd., 2006.
[11] G. Gauthier, P. Gondret, and M. Rabaud, Motions of anisotropic particles: Application to visualization of threedimensional flows. Physics of Fluids, 10 (9): 2147–2154, 1998.
[12] G. B. Jeffery, Motions of ellipsoidal paricles immersed in a viscous fluid. Proceedings of the Royal Society of London, Series A, Papers of a Mathematical and Physical Character, 102 (715): 161–179, November 1922.
[13] E. L. Koschmieder, Bénard Cells and Taylor Vortices. Cambridge University Press, New York, NY, 1993.
[14] E. L. Koschmieder, Bénard Cells and Taylor Vortices. Cambridge University Press, New York, 1993.
[15] E. L. Koschmieder and S. A. Prahl, Surfacetension driven Bénard convection in small containers. Journal of Fluid Mechanics, 215: 571–583, 1990.
[16] P. Lacroute and M. Levoy, Fast volume rendering using a shearwarp factorization of the viewing transformation. In SIGGRAPH '94: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pages 451–458, New York, NY, USA, 1994. ACM Press.
[17] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf, The state of the art in flow visualization: Dense and texturebased techniques. Computer Graphics Forum, 23 (2): 203–221, 2004.
[18] W. H. Leong, K. G. T. Hollands, and A. P. Brunger, On a physicallyrealizable benchmark problem in internal natural convection. Int. J. Heat Mass Transfer, 41 (23): 3817–3828, 1998.
[19] W. H. Leong, K. G. T. Hollands, and A. P. Brunger, Experimental Nusselt numbers for a cubicalcavity benchmark problem in natural convection. Int. J. Heat Mass Transfer, 42 (11): 1979–1989, 1999.
[20] P. Matisse and M. Gorman, Neutrally buoyant anisotropic particles for flow visualization. Physics of Fluids, 27 (4): 759–760, April 1984.
[21] Ömer Savas, On flow visualization using reflective flakes. Journal of Fluid Mechanics, 152: 235–248, 1985.
[22] OpenGL Architectural Review Board. OpenGL 2.1 specification. December 2006.
[23] R. L. Panton, Incompressible Flow. John Wiley & Sons, Inc., 2 edition, 1996.
[24] D. W. Pepper and T. G. Hollands, Summary of benchmark numerical studies for 3d natural convection in an airfilled enclosure. Numerical Heat Transfer, Part A, 42: 1–11, 2002.
[25] M. F. Schatz, S. J. V. Hook, W. D. McCormick, J. B. Swift, and H. L. Swinney, Longwavelength surfacetensiondriven Bénard convection: Experiment and theory. J. Fluid Mech., 345: 45–78, 1997.
[26] G. Schussman and K.L. Ma, Anisotropic volume rendering for extremely dense, thin line data. In Proceedings of IEEE Visualization 2004, pages 107–114, Austin, TX, October 2004. IEEE.
[27] A. H. Squillacote, The ParaView Guide. Kitware, Inc., 2006.
[28] S. T. Thoroddsen and J. M. Bauer, Qualitative flow visualization using colored lights and reflective flakes. Physics of Fluids, 11 (7): 1702–1704, July 1999.
[29] C. Wheatstone, The Bakerian Lecture: An account of several new instruments and processes for determining the constants of a voltaic circuit. Philosophical Transactions of the Royal Society of London, 133: 303–327, 1843.