This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Virtual Rheoscopic Fluids for Flow Visualization
November/December 2007 (vol. 13 no. 6)
pp. 1751-1758
Physics-based flow visualization techniques seek to mimic laboratory flow visualization methods with virtual analogues. In this work we describe the rendering of a virtual rheoscopic fluid to produce images with results strikingly similar to laboratory experiments with real-world rheoscopic fluids using products such as Kalliroscope. These fluid additives consist of microscopic, anisotropic particles which, when suspended in the flow, align with both the flow velocity and the local shear to produce high-quality depictions of complex flow structures. Our virtual rheoscopic fluid is produced by defining a closed-form formula for the orientation of shear layers in the flow and using this orientation to volume render the flow as a material with anisotropic reflectance and transparency. Examples are presented for natural convection, thermocapillary convection, and Taylor-Couette flow simulations. The latter agree well with photographs of experimental results of Taylor-Couette flows from the literature.

[1] C. D. Andereck, S. S. Liu, and H. L. Swinney, Flow regimes in a circular couette system with independently rotating cylinder. J. Fluid Mech., 4: 155–183, 1986.
[2] W. L. Barth, Simulation of Non-Newtonian Fluids on Workstation Clusters. PhD thesis, The University of Texas at Austin, May 2004.
[3] W. L. Barth and G. F. Carey, Extension of the cht-01 natural convection benchmark problem to non-newtonian fluids. In Proceedings of CHT-04: ICHMT International Symposium on Advances in Computational Heat Transfer, Norway, April 2004. ICHMT.
[4] W. L. Barth and G. F. Carey, On a natural convection benchmark problem in non-newtonian fluids. Numerical Heat Transfer, Part B, 50: 193–216, 2006.
[5] D. Blythe, The Direct3D 10 system. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, pages 724–734, New York, NY, USA, 2006. ACM Press.
[6] G. F. Carey, R. McLay, W. Barth, S. Swift, and B. Kirk, Distributed parallel simulation of surface tension driven viscous flow and transport processes. In Computational Fluid Dynamics: Proceedings of the Fourth UNAM Supercomputing Conference, pages 143–155. UNAM, June 2000.
[7] G. de Vahl Davis, Laminar natural convection in an enclosed rectangular cavity. International Journal of Heat and Mass Transfer, 11: 1675–1693, April 1968.
[8] G. de Vahl Davis, Natural convection of air in a square cavity: A bench mark numerical solution. IJNMF, 3: 249–264, 1983.
[9] G. de Vahl Davis and I. P. Jones, Natural convection in a square cavity: A comparison exercise. IJNMF, 3: 227–248, 1983.
[10] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf, Real-Time Volume Graphics. A. K. Peters Ltd., 2006.
[11] G. Gauthier, P. Gondret, and M. Rabaud, Motions of anisotropic particles: Application to visualization of three-dimensional flows. Physics of Fluids, 10 (9): 2147–2154, 1998.
[12] G. B. Jeffery, Motions of ellipsoidal paricles immersed in a viscous fluid. Proceedings of the Royal Society of London, Series A, Papers of a Mathematical and Physical Character, 102 (715): 161–179, November 1922.
[13] E. L. Koschmieder, Bénard Cells and Taylor Vortices. Cambridge University Press, New York, NY, 1993.
[14] E. L. Koschmieder, Bénard Cells and Taylor Vortices. Cambridge University Press, New York, 1993.
[15] E. L. Koschmieder and S. A. Prahl, Surface-tension driven Bénard convection in small containers. Journal of Fluid Mechanics, 215: 571–583, 1990.
[16] P. Lacroute and M. Levoy, Fast volume rendering using a shearwarp factorization of the viewing transformation. In SIGGRAPH '94: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pages 451–458, New York, NY, USA, 1994. ACM Press.
[17] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf, The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum, 23 (2): 203–221, 2004.
[18] W. H. Leong, K. G. T. Hollands, and A. P. Brunger, On a physically-realizable benchmark problem in internal natural convection. Int. J. Heat Mass Transfer, 41 (23): 3817–3828, 1998.
[19] W. H. Leong, K. G. T. Hollands, and A. P. Brunger, Experimental Nusselt numbers for a cubical-cavity benchmark problem in natural convection. Int. J. Heat Mass Transfer, 42 (11): 1979–1989, 1999.
[20] P. Matisse and M. Gorman, Neutrally buoyant anisotropic particles for flow visualization. Physics of Fluids, 27 (4): 759–760, April 1984.
[21] Ömer Savas, On flow visualization using reflective flakes. Journal of Fluid Mechanics, 152: 235–248, 1985.
[22] OpenGL Architectural Review Board. OpenGL 2.1 specification. December 2006.
[23] R. L. Panton, Incompressible Flow. John Wiley & Sons, Inc., 2 edition, 1996.
[24] D. W. Pepper and T. G. Hollands, Summary of benchmark numerical studies for 3-d natural convection in an air-filled enclosure. Numerical Heat Transfer, Part A, 42: 1–11, 2002.
[25] M. F. Schatz, S. J. V. Hook, W. D. McCormick, J. B. Swift, and H. L. Swinney, Long-wavelength surface-tension-driven Bénard convection: Experiment and theory. J. Fluid Mech., 345: 45–78, 1997.
[26] G. Schussman and K.-L. Ma, Anisotropic volume rendering for extremely dense, thin line data. In Proceedings of IEEE Visualization 2004, pages 107–114, Austin, TX, October 2004. IEEE.
[27] A. H. Squillacote, The ParaView Guide. Kitware, Inc., 2006.
[28] S. T. Thoroddsen and J. M. Bauer, Qualitative flow visualization using colored lights and reflective flakes. Physics of Fluids, 11 (7): 1702–1704, July 1999.
[29] C. Wheatstone, The Bakerian Lecture: An account of several new instruments and processes for determining the constants of a voltaic circuit. Philosophical Transactions of the Royal Society of London, 133: 303–327, 1843.

Index Terms:
Flow visualization, rheoscopic fluids.
Citation:
William Barth, Christopher Burns, "Virtual Rheoscopic Fluids for Flow Visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1751-1758, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70610
Usage of this product signifies your acceptance of the Terms of Use.