This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Segmentation of Three-dimensional Retinal Image Data
November/December 2007 (vol. 13 no. 6)
pp. 1719-1726
We have combined methods from volume visualization and data analysis to support better diagnosis and treatment of human retinal diseases. Many diseases can be identified by abnormalities in the thicknesses of various retinal layers captured using optical coherence tomography (OCT). We used a support vector machine (SVM) to perform semi-automatic segmentation of retinal layers for subsequent analysis including a comparison of layer thicknesses to known healthy parameters. We have extended and generalized an older SVM approach to support better performance in a clinical setting through performance enhancements and graceful handling of inherent noise in OCT data by considering statistical characteristics at multiple levels of resolution. The addition of the multi-resolution hierarchy extends the SVM to have “global awareness.” A feature, such as a retinal layer, can therefore be modeled

[1] S. Asrani, R. Zeimer, M. Goldberg, and S. Zou, Application of rapid scanning retinal thickness analysis in retinal diseases. Ophthalmology, 104 (7): 1145–1151, 1997.
[2] V. Blanz, B. Schlkopf, H. Blthoff, C. Burges, V. Vapnik, and T. Vetter, Comparison of view-based object recognition algorithms using realistic 3d models. In Proc. Int'l Conf. Artificial Neural Networks, pages 251–256, 1996.
[3] B. E. Boser, I. Guyon, and V. Vapnik, A training algorithm for optimal margin classifiers. In Proc. Fifth Ann. Workshop Computational Learning Theory, pages 144–152, 1992.
[4] C. Cortes and V. Vapnik, Support vector network. Machine Learning, 20 (3): 273–297, 1995.
[5] E. Gelenbe, Y. Feng, K. Ranga, and R. Krishnan, Neural networks for volumetric mr imaging of the brain. In Proc. Int'l Workshop Neural Networks for Identification, Control, Robotics, and Signal/Image Processing, pages 194–202, 1996.
[6] V. Guedes and et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology, 110 (1): 177–189, 2003.
[7] L. O. Hall, A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger, and J. C. Bezdek, A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans. Neural Networks, 3 (5): 672–682, 1992.
[8] D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Flotte, K. Gregory, and C. Puliafito, Optical coherence tomography. Science, 254: 1178–1181, 1991.
[9] R. Huang and K. L. Ma, Rgvis: Region growing based techniques for volume visualization. In Proc. Pacific Graphics '03 Conf., pages 355–363, 2003.
[10] G. Kindlmann and J. W. Durkin, Semi-automatic generation of transfer functions for direct volume rendering. In Proc. '98 IEEE Symp. Volume Visualization, pages 79–86, 1998.
[11] J. Kniss, G. Kindlmann, and C. Hansen, Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In Proc. IEEE Visualization '01 Conf., pages 255–262, 2001.
[12] M. Levoy, Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8 (3): 29–37, 1988.
[13] S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, Optical coherence angiography. Opt. Express, 14 (17): 7821–7840, 2006.
[14] M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Optics Express, 13 (23): 9480–9491, 2005.
[15] K. R. Muller, S. Mika, and G. Ratsch, An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12 (2): 181–201, 2001.
[16] E. Osuna, R. Freund, and F. Girosi, Training support vector machines: An application to face detection. In Proc. '97 Conf. Computer Vision and Pattern Recognition, pages 130–137, 1997.
[17] K. M. Rajpoot and N. M. Rajpoot, Wavelets and support vector machines for texture classification. In Multitopic Conference, 2004. Proceedings of INMIC 2004. 8th International, pages 328–333, 2004.
[18] W. S. Rasband, Imagej. U. S. National Institutes of Health, Bethesda, Maryland, http://rsb.info.nih.govij/, 1997–2006.
[19] S. R. Sadda, Z. Wu, A. C. Walsh, L. Richine, J. Dougall, R. Cortez, and L. D. LaBree, Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology, 113 (2): 285–293, 2006.
[20] X. Shao and V. Cherkassky, Multi-resolution support vector machine. Neural Networks, 1999. IJCNN apos;99. International Joint Conference on, 2: 1065–1070, 1999.
[21] J. Thorsten, Text categorization with support vector machines: Learning with many relevant features. Proc. 10th European Conf. Machine Learning, pages 137–142, 1998.
[22] F. Y. Tzeng, E. B. Lum, and K. L. Ma, A novel interface for higherdimensional classification of volume data. In Proceedings of the IEEE Visualization 2003 Conference, pages 505–512, 2003.
[23] F. Y. Tzeng, E. B. Lum, and K. L. Ma, An intelligent system approach to higher-dimensional classification of volume data. IEEE Transactions on Visualization and Computer Graphics, 11 (3): 273–284, 2005.
[24] V. Vapnik, Estimation of Dependences Based on Empirical Data. English translation: Springer Verlag, New York, 1982.
[25] M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. Duker, Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology, 112 (10): 1734–1746, 2005.
[26] R. J. Zawadzki, A. R. Fuller, M. Zhao, D. F. Wiley, S. Choi, B. A. Bower, B. Hamann, J. A. Izatt, and J. S. Werner, 3d oct imaging in clinical settings: Toward quantitative measurements of retinal structures. Photonics West - Electronic Imaging 2006, 6138: 8–18, 2006.

Index Terms:
support vector machine, segmentation, image analysis, retinal, optical coherence tomography, volume visualization, image processing.
Citation:
Alfred Fuller, Robert Zawadzki, Stacey Choi, David Wiley, John Werner, Bernd Hamann, "Segmentation of Three-dimensional Retinal Image Data," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1719-1726, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70590
Usage of this product signifies your acceptance of the Terms of Use.