This Article 
 Bibliographic References 
 Add to: 
Visualization of Cosmological Particle-Based Datasets
November/December 2007 (vol. 13 no. 6)
pp. 1712-1718
We describe our visualization process for a particle-based simulation of the formation of the first stars and their impact on cosmic history. The dataset consists of several hundred time-steps of point simulation data, with each time-step containing approximately two million point particles. For each time-step, we interpolate the point data onto a regular grid using a method taken from the radiance estimate of photon mapping. We import the resulting regular grid representation into ParaView, with which we extract isosurfaces across multiple variables. Our images provide insights into the evolution of the early universe, tracing the cosmic transition from an initially homogeneous state to one of increasing complexity. Specifically, our visualizations capture the build-up of regions of ionized gas around the first stars, their evolution, and their complex interactions with the surrounding matter. These observations will guide the upcoming James Webb Space Telescope, the key astronomy mission of the next decade.

[1] J. Ahrens, K. Heitmann, S. Habib, L. Ankeny, P. McCormick, J. Inman, R. Armstrong, and K.-L. Ma, Quantitative and Comparative Visualization Applied to Cosmological Simulations. Journal of Physics Conference Series, 46: 526–534, Sept. 2006.
[2] R. E. Barnhill, Mathematical Software III, chapter Representation and Approximation of Surfaces, pages 69–120. Academic Press, New York, 1977.
[3] R. E. Barnhill, R. P. Dube, and F. F. Little, Shepard's Surface Interpolation Formula: Properties and Extensions. Technical report, CAGD report, University of Utah, 1980.
[4] V. Bromm and R. Larson, The First Stars. Annual Review of Astronomy & Astrophysics, 42: 79–118, 2004.
[5] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno, Speeding Up Isosurface Extraction Using Interval Trees. IEEE Transactions on Visualization and Computer Graphics, 3 (2): 158–170, Apr./June 1997.
[6] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, Optimal Isosurface Extraction from Irregular Volume Data. In 1996 Volume Visualization Symposium, pages 31–38, Oct. 1996.
[7] C. S. Co, B. Hamann, and K. I. Joy, Iso-splatting: A Point-based Alternative to Isosurface Visualization. In J. Rokne, W. Wang, and R. Klein, editors, Proceedings of Pacific Graphics 2003, pages 325–334, Oct.8–10 2003.
[8] C. S. Co and K. I. Joy, Isosurface Generation for Large-Scale Scattered Data Visualization. In G. Greiner, J. Hornegger, H. Niemann, and M. Stamminger, editors, Proceedings of Vision, Modeling, and Visualization 2005, pages 233–240, Nov.16–18 2005.
[9] C. S. Co, S. D. Porumbescu, and K. I. Joy, Meshless Isosurface Generation from Multiblock Data. In O. Deussen, C. D. Hansen, D. A. Keim, and D. Saupe, editors, Proceedings of VisSym 2004. Eurographics, May19–21 2004.
[10] R. L. Cook, Stochastic Sampling in Computer Graphics. ACM Transactions on Graphics, 5 (1): 51–72, Jan. 1986.
[11] N. Dyn, D. Levin, and S. Rippa, Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions. SIAM Journal on Scientific and Statistical Computing, 7 (2): 639–659, 1986.
[12] D. Ferro, U. Becciani, V. Antonuccio-Delogu, A. German, and C. Gheller, Astrophysical Data Analysis and Visualization Toolkit. In F. Murtagh, G. Longo, J.-L. Starck, and V. Di Gesú, editors, Astronomical Data Analysis III, volume 3, 2004.
[13] R. Franke, Scattered Data Interpolation: Tests of Some Methods. Mathematics of Computation, 38 (157): 181–200, January 1982.
[14] A. Fujimoto and K. Iwata, Accelerated Ray Tracing. In Computer Graphics Visual Technology and Art (Proceedings of Computer Graphics Tokyo '85), pages 41–65, 1985.
[15] K. Fukunaga and L. Hostelter, Optimization of k-nearest Neightbor Density Estimates. IEEE Transactions on Information Theory, 19 (3): 320–326, May 1973.
[16] W. J. Gordon and J. A. Wixom, Shepard's Method of 'Metric Interpolation' to Bivariate and Multivariate Interpolation. Mathematics of Computation, 32: 253–264, 1978.
[17] T. H. Greif, J. L. Johnson, V. Bromm, and R. S. Klessen, The First Supernova Explosions: Energetics, Feedback, and Chemical Enrichment. The Astrophysical Journal (to appear), 2007.
[18] R. L. Hardy, Multiquadric Equations of Topography and Other Irregular Surfaces. Journal of Geophysical Research, 76: 1905–1915, 1971.
[19] K. Heitmann, Z. Lukic, P. Fasel, S. Habib, M. S. Warren, M. White, J. Ahrens, L. Ankeny, R. Armstrong, B. O'Shea, P. M. Ricker, V. Springel, J. Stadel, and H. Trac, The Cosmic Code Comparison Project. The Astrophysical Journal (submitted), 2007.
[20] H. W. Jensen, Global Illumination using Photon Maps. In Eurographics Rendering Workshop 1996, pages 21–30, June 1996.
[21] H. W. Jensen and P. H. Christensen, Efficient Simulation of Light Transport in ScenesWith Participating Media Using Photon Maps. In Proceedings of SIGGRAPH 98, pages 311–320, July 1998.
[22] J. L. Johnson, T. H. Greif, and V. Bromm, Local Radiative Feedback in the Formation of the First Protogalaxies. The Astrophysical Journal, 665: 85–113, 2007.
[23] Kitware Incorporated. The Visualization ToolKit (VTK) 5.0 (http://proteinexplorer.orghttp:/ /), 2007.
[24] Kitware Incorporated, Los Alamos National Laboratory, and Sandia Corporation. ParaView 2.6.0 (http:/, 2007.
[25] S. Lee, G. Wolberg, and S. Y. Shin, Scattered Data Interpolation with Multilevel B-Splines. IEEE Transactions on Visualization and Computer Graphics, 03 (3): 228–244, 1997.
[26] S. Levy, Partiview 0.89 (http://dart.ncsa.uiuc.edupartiview/), 2006.
[27] Y. Livnat, The Visualization Handbook, chapter Accelerated Isosurface Extraction Approaches, pages 39–55. Elsevier, 2005.
[28] Y. Livnat, H.-W. Shen, and C. R. Johnson, A Near Optimal Isosurface Extraction Algorithm Using the Span Space. IEEE Transactions on Visualization and Computer Graphics, 2 (1): 73–84, Mar. 1996.
[29] Y. Livnat and X. Tricoche, Interactive Point-Based Isosurface Extraction. IEEE Visualization 2004, pages 457–464, 2004.
[30] W. E. Lorensen and H. E. Cline, Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In Computer Graphics (Proceedings of SIGGRAPH 87), pages 163–169, July 1987.
[31] C. A. Micchelli, Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions. Constructive Approximation, 2: 11–22, Dec 1986.
[32] M. Pharr and G. Humphreys, Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, 2004.
[33] R. J. Renka, Multivariate Interpolation of Large Sets of Scattered Data. ACM Transactions on Mathematical Software, 14 (2): 139–148, June 1988.
[34] P. Rosenthal and L. Linsen, Direct Isosurface Extraction from Scattered Volume Data. In T. Ertl, K. Joy, and B. Santos, editors, Eurographics / IEEE-VGTC Symposium on Visualization, 2006.
[35] L. L. Schumaker, Approximation Theory II, chapter Fitting Surfaces to Scattered Data, pages 203–268. Academic Press, New York, 1976.
[36] D. Shepard, A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the 1968 23rd ACM national conference, pages 517–524, 1968.
[37] V. Springel and L. Hernquist, Cosmological Smooth Particle Hydrodynamics Simulations: the Entropy Equation. Monthly Notices of the Royal Astronomical Society, 333: 649–664, 2002.
[38] V. Springel, N. Yoshida, and S. White, GADGET: a Code for Collisionless and Gasdynamical Cosmological Simulations. New Astronomy, 6: 79–117, 2001.
[39] P. Sutton, C. Hansen, H. Shen, and D. Schikore, A Case Study of Isosurface Extraction Algorithm Performance. In W. de Leeuw and R. van Liere, editors, Data Visualization 2000, pages 259–268. Springer, 2000.
[40] B. von Rymon-Lipinski, N. Hanssen, T. Jansen, L. Ritter, and E. Keeve, Efficient Point-Based Isosurface Exploration Using the Span Triangle. In IEEE Visualization 2004, pages 441–448, Oct 2004.
[41] J. Wilhelms and A. V. Gelder, Octrees for Faster Isosurface Generation. ACM Transactions on Graphics, 11 (3): 201–227, July 1992.

Index Terms:
Interpolation, Isosurface, Astronomy, Cosmology.
Paul Navratil, Jarrett Johnson, Volker Bromm, "Visualization of Cosmological Particle-Based Datasets," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1712-1718, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70616
Usage of this product signifies your acceptance of the Terms of Use.