This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Interactive sound rendering in complex and dynamic scenes using frustum tracing
November/December 2007 (vol. 13 no. 6)
pp. 1672-1679
We present a new approach for simulating real-time sound propagation in complex, virtual scenes with dynamic sources and objects. Our approach combines the efficiency of interactive ray tracing with the accuracy of tracing a volumetric representation. We use a four-sided convex frustum and perform clipping and intersection tests using ray packet tracing. A simple and efficient formulation is used to compute secondary frusta and perform hierarchical traversal. We demonstrate the performance of our algorithm in an interactive system for complex environments and architectural models with tens or hundreds of thousands of triangles. Our algorithm can perform real-time simulation and rendering on a high-end PC.

[1] V. Algazi, R. Duda, and D. Thompson, The CIPIC HRTF Database. In IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, 2001.
[2] F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, Real time modeling of acoustic propagation in complex environments. In Proc. of 7th International Conference on Digital Audio Effects, 2004.
[3] M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen, Phonon tracing for auralization and visualization of sound. In Proceedings of IEEE Visualization 2005, pages 151–158, 2005.
[4] J. Borish, Extension of the image model to arbitrary polyhedra. Journal of the Acoustical Society of America, 75 (6): 1827–1836, 1984.
[5] C. Brebbia, editor. Computational Acoustics and its Environmental Applications. Transactions of the Wessex Institute, 1995.
[6] L. Carpenter, The a-buffer, an antialiased hidden surface method. In SIGGRAPH '84: Proceedings of the 11th annual conference on Computer graphics and interactive techniques, pages 103–108, New York, NY, USA, 1984. ACM Press.
[7] P. R. Cook, Real Sound Synthesis for Interactive Applications. A. K. Peters, 2002.
[8] B.-I. Dalenbäck, P. Svensson, and M. Kleiner, Room acoustic prediction and auralization based on an extended image source model. The Journal of the Acoustical Society of America, 92 (4): 2346, 1992.
[9] E. Deines, M. Bertram, J. Mohring, J. Jegorovs, F. Michel, H. Hagen, and G. Nielson, Comparative visualization for wave-based and geometric acoustics. IEEE Transactions on Visualization and Computer Graphics, 12 (5), 2006.
[10] I. A. Drumm, The Development and Application of an Adaptive Beam Tracing Algorithm to Predict the Acoustics of Auditoria. PhD thesis, 1997.
[11] A. Farina, Ramsete - a new pyramid tracer for medium and large scale acoustic problems. In Proceedings of EURO-NOISE, 1995.
[12] T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West, A beam tracing approach to acoustic modeling for interactive virtual environments. In Proc. of ACM SIGGRAPH, pages 21–32, 1998.
[13] T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. West, G. Pingali, P. Min, and A. Ngan, A beam tracing method for interactive architectural acoustics. Journal of the Acoustical Society of America, 115 (2): 739–756, February 2004.
[14] T. Funkhouser, N. Tsingos, and J.-M. Jot, Survey of methods for modeling sound propagation in interactive virtual environment systems. Presence and Teleoperation, 2003.
[15] T. A. Funkhouser, P. Min, and I. Carlbom, Real-time acoustic modeling for distributed virtual environments. In Proc. of ACM SIGGRAPH, pages 365–374, 1999.
[16] M. A. Garcia-Ruiz and J. R. Gutierrez-Pulido, An overview of auditory display to assist comprehension of molecular information. Interact. Comput., 18 (4): 853–868, 2006.
[17] J. Genetti and D. Gordon, Ray tracing with adaptive supersampling in object space. In Graphics Interface '93, pages 70–77, 1993.
[18] P. S. Heckbert and P. Hanrahan, Beam tracing polygonal objects. In Proc. of ACM SIGGRAPH, pages 119–127, 1984.
[19] D. L. James, J. Barbic, and D. K. Pai, Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. In Proc. of ACM SIGGRAPH, pages 987–995, 2006.
[20] D. G. Jon Genetti and G. Williams, Adaptive supersampling in object space using pyramidal rays. Computer Graphics Forum, 17 (1): 29–54, 1998.
[21] C. Joslin and N. Magnetat-Thalmann, Significant facet retrieval for realtime 3d sound rendering. In Proceedings of the ACM VRST, 2003.
[22] B. Kapralos, M. Jenkin, and E. Milios, Acoustic modeling utilizing an acoustic version of phonon mapping. In Proc. of IEEE Workshop on HAVE, 2004.
[23] A. Krokstad, S. Strom, and S. Sorsdal, Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound and Vibration, 8 (1): 118–125, July 1968.
[24] K. Kunz and R. Luebbers, The Finite Difference Time Domain for Electromagnetics. CRC Press, 1993.
[25] K. H. Kuttruff, Auralization of impulse responses modeled on the basis of ray-tracing results. Journal of Audio Engineering Society, 41 (11): 876–880, November 1993.
[26] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha, RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs. IEEE Symposium on Interactive Ray Tracing, 2006.
[27] H. Lehnert, Systematic errors of the ray-tracing algorithm. J. Applied Acoustics, 38 (2–4): 207–221, 1993.
[28] R. B. Loftin, Multisensory perception: Beyond the visual in visualization. Computing in Science and Engineering, 05 (4): 56–58, 2003.
[29] T. Lokki, L. Savioja, R. Vaananen, J. Huopaniemi, and T. Takala, Creating interactive virtual auditory environments. IEEE Computer Graphics and Applications, 22 (4): 49–57, 2002.
[30] M. Naef, O. Staadt, and M. Gross, Spatialized audio rendering for immersive virtual environments. In Proceedings of the ACM VRST, 2002.
[31] K. V. Nesbitt, Modelling human perception to leverage the reuse of concepts across the multi-sensory design space. In APCCM '06: Proceedings of the 3rd Asia-Pacific conference on Conceptual modelling, pages 65–74, Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.
[32] J. F. O'Brien, P. R. Cook, and G. Essl, Synthesizing sounds from physically based motion. In Proc. of ACM SIGGRAPH, pages 529–536, 2001.
[33] T. Otsuru, Y. Uchinoura, R. Tomiku, N. Okamoto, and Y. Takahashi, Basic concept, accuracy and application of large-scale finite element sound field analysis of rooms. In Proc. ICA 2004 (Kyoto), pages I-479–I-482 April 2004.
[34] A. Rajkumar, B. F. Naylor, F. Feisullin, and L. Rogers, Predicting rf coverage in large environments using ray-beam tracing and partitioning tree represented geometry. Wirel. Netw., 2 (2): 143–154, 1996.
[35] A. Reshetov, A. Soupikov, and J. Hurley, Multi-level ray tracing algorithm. ACM Trans. Graph., 24 (3): 1176–1185, 2005.
[36] L. Savioja, Modeling Techniques for Virtual Acoustics. PhD thesis, Helsinki University of Tech nology, 1999.
[37] K. Shoemake, Pluecker coordinate tutorial. Ray Tracing News, 11 (1), 1998.
[38] S. Smith, Auditory representation of scientific data. In Focuson Scientific Visualization, pages 337–346, London, UK, 1993. Springer-Verlag.
[39] U. Stephenson, Quantized pyramidal beam tracing - a new algorithm for room acoustics and noise immission prognosis. Acustica - Acta Acustica, 82 (3): 517–525, 1996.
[40] H. Suzuki and A. S. Mohan, Frustum ray tracing technique for high spatial resolution channel characteristic map. In Radio and Wireless Conference (RAWCON) 98, pages 253–256. IEEE Press, 1998.
[41] R. Tomiku, T. Otsuru, Y. Takahashi, and D. Azuma, A computational investigation on measurements in reverberation rooms by finite element sound field analysis. In Proc. ICA 2004 (Kyoto), pages II-941–II-942, April 2004.
[42] N. Tsingos, E. Gallo, and G. Drettakis, Perceptual audio rendering of complex virtual environments. ACM Trans. Graph., 23 (3): 249–258, 2004.
[43] K. van den Doel, D. Knott, and D. K. Pai, Interactive simulation of complex audio-visual scenes. Presence: Teleoperators and Virtual Environments, 13 (1): 99–111, 2004.
[44] I. Wald, C. Benthin, M. Wagner, and P. Slusallek, Interactive rendering with coherent ray tracing. In A. Chalmers and T.-M. Rhyne, editors, Computer Graphics Forum (Proceedings of EUROGRAPHICS 2001), volume 20, pages 153–164. Blackwell Publishers, Oxford, 2001.
[45] I. Wald, S. Boulos, and P. Shirley, Ray Tracing Deformable Scenes using Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics, 2006.
[46] M. Wand and W. Straßer, Multi-resolution sound rendering. In SPBG'04 Symposium on Point - Based Graphics 2004, pages 3–11, 2004.
[47] L. M. Wang, J. Rathsam, and S. R. Ryherd, Interactions of model detail level and scattering coefficients in room acoustic computer simulation. In International Symposium on Room Acoustics: Design and Science, 2004.
[48] T. Whitted, An improved illumination model for shaded display. Commun. ACM, 23 (6): 343–349, 1980.

Index Terms:
Acoustic propagation, Ray tracing
Citation:
Christian Lauterbach, Anish Chandak, Dinesh Manocha, "Interactive sound rendering in complex and dynamic scenes using frustum tracing," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1672-1679, Nov.-Dec. 2007, doi:10.1109/TVCG.2007.70567
Usage of this product signifies your acceptance of the Terms of Use.